CRAB CROSSING FOR LHC UPGRADE

Rama Calaga (on behalf of LHC-CC Collaboration) SRF2011, July 29, 2011

- LHC and its upgrade
- Evolution of technology concepts & studies
- Planning & future activities

THE LHC

27 km @1.9K to accelerate protons to 7TeV

4.5K-1.9K

...yet no Higgs or is there

http://www.nature.com/news/2011/110722/full/news.2011.435.html

LHC: TODAY & FUTURE

		2015	2021
	Today	Today Design	
Energy [TeV]	3.5	7.0	7.0
Intensity [x 10 ¹¹]	1.1-1.2	1.15	≥ 1.7
N. Emittance (µm)	2.2-2.5	3.75	≥ 3.75
β* (cm)	150	55	15
# of bunches	1380	2808	2808
$L_{peak} [x \ 10^{34}]$	0.19	1	~8*
L _{int} [fb ⁻¹ /yr]	~2	67	250

*Luminosity leveling \rightarrow 5 x 10³⁴ [cm⁻¹ s⁻¹]

Ultimate goal by 2030: 3000 fb⁻¹ (Radiation damage limit \sim 700 fb⁻¹)

X-ANGLE & REDUCTION

CRAB CROSSING, EVOLUTION

R. Palmer, 1988, LC

CAVITY SPECIFICATION

	Baseline	Unit	LHC	KEK-B	
	Frequency	MHz	400 (800)	509	
	Deflecting Voltage	MV/Cav	5	2.0 (0.9-1.5)	
R	Peak E-field	MV/m	< 45	28	
	Peak B-field	mТ	< 80 mT	82 mT	
a	Aperture (diameter)	mm	84	130	
netric	Cav Outer Envelope	mm	< 150	866/483	
Geom	Module length	m	$\sim 1 \text{m}$	1.5 m	
	HV crossing	_	Desirable	N/A	
S	β* (IR1/IR5)	cm	15-25	63/0.7	
Optic	βcrab	km	~ 5	0.2/0.04	
	Non-linear harmonics	Units [10 ⁻⁴]	2-3	N/A	
	Impedance Budget	Longitudinal, Transverse	$60 \mathrm{k} \Omega$, $2.5 \mathrm{M} \Omega/\mathrm{m}$	-	

Beam-beam separation

L. Xiao et al.

Two-Cell Elliptical

- Frequency: 800 MHz
- Strong HOM damping & compact

 ${\sim}250~\text{mm}$ outer radius

Only fits in one location in the LHC (IR4)

Highly constrained

2009

Decision to focus on concepts with compact size

Frequency: 400 MHz BP radius: 42 mm Outer envelope: < 150mm

WORLDWIDE DESIGN EFFORT

~4yr of design evolution

Exciting & rapid development of deflecting cavities (BNL, CERN, CI-DL-LU, FNAL, KEK, ODU/JLAB, SLAC)

LU-DI (JLAB) Design

Towards Conical rods

Prototype Tuner for CEBAF Ugrade

HOM Damping Concepts

Courtesy G. Burt et al.

ODU-JLAB Design

Courtesy J. Delayen et al.

Improved properties Cylindrical shape

Fewer HOM modes

Phase II approved For building cavity prototype (ODU-Niowave)

KEK-Kota Design

Courtesy K. Nakanishi et al.

Rotated Pillbox with shielding cones HOM studies and damping scheme underway

HOM Damping

SLAC-LARP Design

Zenghai Li et al.

Dual Crossing Constraint

Parallel bar & ½-Wave cavities fit only for horizontal crossing! Only works for one experiment

In 2010, design efforts to focus on dual crossing (HV)

$^{1}\!\!/_{4}$ Wave Concept

$\mathsf{Ben}\text{-}\mathsf{Zvi}/\mathsf{Calaga}$

Ultra compact & fits HV crossing

Accelerating voltage (need for supression)

Most Recently

Present Status

4-rod design has advanced

Engineering meeting for fabrication (mid-August)

Merging of efforts between ODU & SLAC

Parallel bar & ridged waveguide concepts \rightarrow common design

 $\frac{1}{4}$ wave concept to continue towards final design

$V_{_{ m T}} = 2.5 \ { m MV}$	4-Rod	Double Ridge	1/4-Wave		
Epk	33 MV/m	25 MV/m	48 MV/m		
Bpk	49 mT	55 mT	110 mT		
R/QL	953 Ω	285 Ω	264 Ω		
1 st HOM	375 MHz	619 MHz	675 MHz		

Some Key Issues

Beyond the cavity technology:

- a. RF Phase noise \rightarrow emittance blowup
- b. Abrupt cavity failures \rightarrow Machine damage
- c. Impedance \rightarrow beam instabilities

CRAB PHASE NOISE

KEKB observations \rightarrow Modulated noise 30 Hz - 32 kHz

Weak-strong beam-beam simulations $\leq 0.1\sigma (10\%/hr)$ Strong-strong BB simulations $\leq 0.02\sigma.(\tau)$

Dedicated measurements with induced noise in KEK $\leq 0.03^{\circ}$ <u>LHC measurements</u> with beam-beam & damper noise planned for 2011-12

MACHINE PROTECTION

Requirement

Stay above the 3-turn beam-abort threshold

Tracking studies

Nominal LHC \rightarrow Losses due 1-turn voltage/phase failure is non-issue

 \rightarrow Additional checks needed for different distributions

Upgrade optics (SLHC v3) under study

Long. Position: 4009 m +/- 5m Total length: 10.72 m β x, β y: 30.3m, 76.8m

Emittance growth, cavity operation & failures with hadron beam

Overall Planning

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
LHC operation			Splice Conso	lid.		Co	llim. , prep C	C			IT upgrade,	CC
EuCARD												
DS HL-LHC				PDR	Т	DR						
Project Document												
Compact Crab Cavity												
Validation												
Milestone	Com	pact Cavity 1	echnology v	alidation								
Technical Design												
Milestone	Decision	n on impleme	entation: Loc	al scheme w	ith Compact	CC						
Construction												
Operation			FP7 D	esign S	tudy							
Elliptical Crab Cavity		•										
Technical Design												
Construction				Same Sa	a maria ana ana ang sa							
Milestone	Decision	on mplemer	ntation: Glob	al scheme w	ith Elliptical	CC						
Operation		-										
Infrastructure LHC												
Planning												
Prepare IR4												
Prepare IR1 & IR5		-										
Infrastructure SPS												
Planning												
Preparation (Coldex)												
Beam test Elliptical												
Beam test Compact												
KEK-B CC test in SPS												
Prepare Coldex for KEKBCC												
Milestone		Decision on I	KEKB-CC test	in SPS								
Beam test KEK-B CC												

Budget Overview

Material Budget

MCHF	2011	2012	2013	2014	2015	2016	2017-20
R&D (3-4 cavities)	3.55	5.6	3.4	2.35	3.3	1.15	0.1
Cavity Construction						3.5	17.5
Cryostats						4.0	30
RF Systems						1.0	6.5
LLRF & Controls						0.3	5

10 cryomodules + Ancilliaries

Total: 87.25 MCHF

Present support (R&D):

US-LARP (\$0.4M/yr), EU-FP7 (~1.5M€/yr), SBIR/STTR (\$1.25M)

FUTURE & CHALLENGES

Fabrication

Complex shapes, but this community already has experience Build warm prototypes to gain experience & HOM measurements

Cavity treatment

Independent platform for each prototype but common procedure Field gradient demonstration (+ multipacting, mechanical effects etc..)

Cryostat & Couplers

Adopt a common platform (after prototyping), for example could use bandpass filter for the HOM extraction

RF & Beam tests

Cavity deflecting gradient, multipacting and quench properties with and w/o beam, field assymetry, cavity alignment, impedance measurements, damping properties, mechanical stability, tuning, emittance growth, field ramping, RF controls, phase and voltage stability etc..

A1: DRAFT OPTICS (SLHC V3)

