SRF Challenges for Improving Operational Electron Linacs

C. E. Reece

Jefferson Lab

SRF 2011 – SRF Challenges for Improving Operational Electron Linacs - Reece

Outline

Jeffer

What is the real growing-edge experience with SRF systems for operational electron linacs?

- Contamination control \rightarrow field emission and heat
- Magnetic field environment → heat
- Seals and gaskets → vacuum leaks
- Cavity processing protocol → reliable peak results
- Fabrication tolerances and HOM damping \rightarrow BBU
- Heat management → operational limitations & cost
- Microphonics management → power efficiency

Outline

- CEBAF
 - Reworking 20-year-old cryomodules -- C50
 - Learning from upgrade prototype cryomodules
 - 12 GeV Upgrade project
- S-DLINAC
 - Improving *Q*'s and increasing energy
- ELBE

Jefferson Lab

- Field emission limited energy
- Developing SRF gun

Rework of CEBAF Cryomodules – C50 program

- Objective
 - Clean-up field emission
 - Raise useful gradients from ~5.5 MV/m to 12.5 MV/m
- Ten cryomodules were fully disassembled
- Cavities (fabricated 1991)
 - Baked @ 600°C
 - Tuned

Jefferson Lab

- 30 μm BCP
- HPR UPW
- Cold rf window moved outboard of new "dogleg" waveguide section
- Cavity pairs assembled under improved cleanroom conditions
- Cryomodules were reassembled, tested, and reinstalled in CEBAF

M. Drury, et al., "Summary Report for the C50 Cryomodule Project" TPU108, PAC2011

SRF 2011 – SRF Challenges for Improving Operational Electron Linacs - Reece

Rework of CEBAF Cryomodules – C50 program

Rework of CEBAF Cryomodules – C50 program

- Established a solid 6 GeV base for the 12 GeV upgrade, but cryo heat load is higher than expected
- Operational setup now considers cavity 2K W/MV as well as MV/m in gradient distribution algorithm

Max 5-pass Exp Energy (GeV)

CEBAF Prototype Upgrade Cryomodule Challenges

- New CM design 8-cavity string suspended in space frame
- New cavity designs "HG" and "LL"

Jefferson Lab

- New Tuners two designs tested, "scissor-jack" selected
- Feedthroughs leak tight and thermally stable
- **RF waveguide windows -** leak tight and thermally stable
- **Cu-plated SS waveguide** low rf loss, low static loss, no particulates
- Flange seals cavity waveguide coupler serpentine gasket
- **Cavity fabrication tolerances** HOM damping \rightarrow BBU
 - A.-M. Valente, et al., *Production and Performance of the CEBAF Upgrade Cryomodule Intermediate Prototypes.* TUPKF072, EPAC2004
 - C. E. Reece et al., Performance of the CEBAF Prototype Cryomodule Renascence," WEP32, SRF2007
 - F. Marhauser , JLab Cavity Fabrication Errors, Consequences, and Lessons Learned JLab TN-10-021
 - R. Kazimi, et al., Observation and Mitigation of Multiturn BBU in CEBAF WEPP087, EPAC08
 - F. Marhauser et al. Critical Dipole Modes in JLab Upgrade Cavities, THP009, LINAC10

12 GeV Upgrade Cavities

- **Production process** press for reliable efficiency
 - 160 µm BCP and pre-tuned by vendor
 - Receipt inspection mechanical and rf
 - US >> Bake: 600 C, 10 hrs
 - US >> EP: **30 μm, @20°C** regulated by external water spray
 - US >> Tune
 - Helium vessel welding
 - Flange lapping
 - HPR

Jefferson Lab

- Partial assembly
- HPR >> dry in Class 10 cleanroom
- Final assembly, leak check
- Bake: **120° C, 24 hrs**
- Vertical test @ 2.07 K
- HPR >> dry in Class 10
- String assembly

A. Reilly et al., *Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade,*"**TUPO061** this conference.

12 GeV project cavities – to date

Jefferson Lab

10 🐧

12 GeV project cavities

Jefferson Lab

Vertical acceptance test of the 8 cavities in C100 string #3

12 GeV Upgrade Cavities

• Improved electropolishing process is now standardized and controlled

Jefferson Lab

C. E. Reece and H. Tian, *Exploiting New Electrochemical Understanding of Niobium Electropolishing for Improved Performance of SRF Cavities for CEBAF* **THP010**, LINAC10

12

State-of-the-art production SRF cavity

C100-6

12 GeV Upgrade Cryomodule

First cavity string @ completion

Installation of super-insulation on upgrade cryomodule

Jefferson Lab

Other CEBAF Upgrade SRF Challenges

- Found weak specification on SS helium vessel material
 - High permeability, degraded cavity Q
 - Found early, material replaced
 - Issue was resolved quickly
- Higher than expected microphonic sensitivity found in first cryomodule
 - Investigation guiding attention to string longitudinal modes

Microphonic detuning **budget is 5 Hz RMS**

Detuning limit of C100 cavities with 12 kW of available rf power at several different operating gradients, with 460 µA design beam current

SRF 2011 – SRF Challenges for Improving Operational Electron Linacs - Reece

CEBAF Upgrade Challenge – Simultaneous Facility Upgrade

Reliable acid transfer?

New cleanroom?

Jefferson Lab

Cryomodule assembly?

Activity Name	Start Date	Finish Date	FY 10	10 FY 11				FY 12				FY 13			
			FQ 4	FQ 1	FQ 2	FQ 3	FQ 4	FQ 1	FQ 2	FQ 3	FQ 4	FQ 1	FQ 2	FQ 3	FQ 4
Accelerator Down Periods	5/16/11 5/15/12	11/15/11 5/15/13													
12 GeV Cryomodule Schedule															
1.3.1.2 Cavity String Assembly	10/25/10	2/13/12													
1.3.1.3 Cryomodule Assembly	1/21/11	6/14/12											Toot		
1.3.1.4 Cryomodules Acceptance Test	6/1/11	7/19/12											Lab		
1.3.1.5 Cryomodule Installation & Test	8/8/11	4/9/13													
									SRF R E L O				R E O C C U		
TEDF Schedule									C A				P A		
Early Start/Finish									T				T		
6.3.1.2 TED Building Construction	9/27/10	12/30/11	I										0		
6.3.1.3 TL Addition Construction	10/1/10	2/3/12							N				N		
6.3.1.4 TL Renovation	4/1/11	1/31/13													
			FQ 4	FQ 1	FQ 2	FQ 3	FQ 4	FQ 1	FQ 2	FQ 3	FQ 4	FQ 1	FQ 2	FQ 3	FQ 4

C. E. Reece and A. Reilly, A New Home for SRF Work at JLab--the Technology and Engineering Development Facility, **TUPO061** this conference.

SRF 2011 – SRF Challenges for Improving Operational Electron Linacs - Reece

16

Injector Upgrade Program

Cavity improvements by firing

R. Eichorn et al., Proc. LINAC 2008 (2008) 395

Status:

7 of 14 cavities fired

• Q increased from typ. 8*10⁸ to 1.5*10⁹

Effect on accelerator performance (combined with other measures):

Increased energy 60 MeV (2007) 80 MeV (2008)

Cold leaks related to helicoflex gaskets

Imprint on the cavity flange

Waveguide to coaxial power coupler with low transversal fields

Waveguide cold-warm transition

Upcoming Upgrades (2011-2013), fully financed

 Installation of a third recirculation path allows 130 MeV in cw operation (currently 85 MeV)

- Installation of two scraper systems (injector arc and extraction beam line: halo free beam with excellent energy definition
- Improvement of the LLRF system and non-isochronous beam dynamics

- 4: FTIR, biological IR experiment
- 5: Near-field and pump-probe IR experiment
- 6: Radiochemistry and sum frequency generation experiment, photothermal deflection spectroscopy

1: Diagnostic station, IR-imaging and biological IR experiment

2: Femtosecond laser, THz-spectroscopy, IR pump-probe experiment

3: Time-resolved semiconductor spectroscopy, THz-spectroscopy

HZD

Superconducting ELBE Linac

Mitglied der Helmholtz-Gemeinschaft

• performance of the four TESLA cavities @ ELBE

Cavities produced by ACCEL Instruments In CW operation since 2002 (cavities C1, C2) and 2005 (C3, C4) Gradient limit is field emission

4

The superconducting RF photo gun at ELBE

ELBE Superconducting RF Photoinjector • New Injector for the ELBE SC Linac

Test Bench for SRF Gun R&D

1: Time resolved semiconductor spectroscopy, THz-spectroscopy 2: Femtosecond laser, THz-spectroscopy, IR pump-probe experiment 3: Dispractic station, IR-impains and biological IR experiment

4: FTIR, biological IR experiment

5: Near field and pump-probe IR experiment 6: Radiochemistry and sum fraguency generation experiment,

roscopy

Installation of electron beamline to ELBE (dogleg) was finished in 2010

Jochen Teichert • j.teichert@hzdr.de • www.hzdr.de • HZDR

Mitglied der Helmholtz-Gemeinschaft

HZDR

SRF gun gradient and beam energy

CW

60

70

80

90

40

30

laser phase [deg]

50

HZDR

• SRF Gun cavity performance

beam energy, maximum bunch charge & beam quality

0

10

20

2.5

6

-20

-10

ELBE – replacement of 1.3 GHz klystrons by SSA sources

10 kW Solid State Power Amplifier

Bruker BioSpin S.A. Wissembourg, France

8

Acknowledgements

Jefferson

- Mike Drury served as the project manager of the C50 project
- **Kirk Davis** is the source of all microphonic characterization measurements at JLab
- Many other members of the Jefferson Lab staff also made numerous vital contributions to the JLab work summarized here
- **Ralf Eichhorn** provided information on progress at S-DALINAC
- Jochen Teichert provided information regarding recent ELBE activities

SRF Challenges to Operational Electron Linacs

Conclusion

Jeffer

- While designs and technology continue to develop, the very real challenges of affording thoroughly vetted designs and effective quality assurance remain quite present in multiple domains that are crucial to the operational success of SRFbased particle accelerators.
- The pressure to realize peak performance reliably and efficiently in this context is unrelenting but a worthy challenger with which to contend.

SRF 2011 – SRF Challenges for Improving Operational Electron Linacs - Reece