Composite Higgs with partial compositeness in the top sector Lol for Snowmass 2021 EF08 - BSM: Model specific explorations

Luca Panizzi

In collaboration with

G. Cacciapaglia, A. Deandrea, G. Ferretti, T. Flacke, D. Buarque Franzosi, B. Fuks and W. Porod

A general picture

All models of composite Higgs predict **new scalars** in the form of pNGBs (with the notable exception of the MCHM)

In models of partial compositeness, new vector-like fermions are also predicted

 $\frac{\lambda_R}{\Lambda^{d_B-5/2}}\mathcal{O}_{\mathcal{B}}t_R \dashrightarrow y_L f \,\bar{T}_L \, t_R \quad \text{with} \quad \mathcal{O}_{\mathcal{B}} = \psi \psi \psi, d_{\mathcal{B}} = 9/2$

pNGBS

Neutral: light but with weak couplings **Electrically charged**: heavier, possibly O(1 TeV)**Coloured**: even heavier, above O(1 TeV) Fermions

Vector-like quarks Vector-like leptons

Both expected to be $\mathcal{O}(\text{TeV})$

Some of these objects can function as DM candidates in some models

A large spectrum of **potential signatures** at the LHC and future colliders from the production, decay and interactions of these objects.

How can we constrain these models at the LHC or FCCs? Which parameters can we use for high-level plots?

pNGBs in composite models

8000

Underlying gauge theories with two fermionic representations:

- $\cdot \psi$, carrying EW
- $\cdot \ \chi,$ carrying QCD and hypercharge

Condensates:

- \cdot pNGBs as $\langle \psi \psi
 angle$ and $\langle \chi \chi
 angle$
- \cdot *T* as $\langle \psi \psi \chi \rangle$ or $\langle \psi \chi \chi \rangle$

Model	EW coset						QCD coset					η'
	$2_{\pm 1/2}$	3_0	$3_{\pm 1}$	1_0	$1_{\pm 1}$	8_0	$\mathbf{\bar{3}}_{2/3}$	$\mathbf{\bar{3}}_{4/3}$	${\bf 6}_{2/3}$	$6_{4/3}$		
M1	1	1	1	1	-	1	-	-	1	-	1	1
M2	1	1	1	1	-	1	-	-	1	-	1	1
M3	1	1	1	1	-	1	-	-	-	1	1	1
M4	1	1	1	1	-	1	-	-	-	1	1	1
M5	1	1	1	1	-	1	1	-	-	-	1	1
M6	1	1	1	1	-	1	-	-	-	-	1	1
M7	1	1	1	1	-	1	-	-	-	-	1	1
M8	1	-	-	1	-	1	-	-	-	1	1	1
M9	1	-	-	1	-	1	-	-	-	1	1	1
M10	2	1	-	2	1	1	-	-	-	1	1	1
M11	2	1	-	2	1	1	-	-	-	1	1	1
M12	2	1	-	2	1	1	-	-	-	-	1	1
			1	90)2.0)6	89	0				

pNGBS

QCD pair production (LHC, FCC-hh)

Non-QCD pair production (LHC, FCC-hh, FCC-ee)

QCD pair production

 $SU(3)_c$ triplets, octects, sextets

2002.01474

Bounds on the octet Reinterpretation of di-jet-pair and 4 top searches

Production only depends on the mass, and if the pNGBs are not broad, the BRs can be factorised

 $\sigma_{QCD}(m_{\phi}) \times BR \times BR$

Bounds in the $\{m_{\phi}, \sigma \times BR \times BR\}$ plane for each decay channel

Luca Panizzi

Single production

1902.06890

Bounds on the lightest U(1) singlet Reinterpretation of multiple searches for a specific benchmark

$\begin{array}{ccc} g & & \\ & & \\ g & & \\ & & \\ & & \\ g & & \\ & &$

For each model the couplings K^{ϕ} and C_f are function of the decay constant f_{ϕ} (some assumptions apply) and of the quantum numbers of the underlying dynamics

The cross-section is function of m_{ϕ} and f_{ϕ}

$$\sigma = F(m_{\phi}, f_{\phi})$$

Bounds in the $\{m_{\phi}, f_{\phi}\}$ plane for each decay channel and for benchmark choices of K^{ϕ} and C_{f}

Luca Panizzi

Non-QCD pair production

From 2005.13578 with inverted y-axis Projection for HL-LHC based on a dedicated analysis for a pNGB of the EW coset

The production cross-section is again a function of m_ϕ and f_ϕ

The BRs will define benchmarks characterised by coupling values

Analogous representation of results for processes of non-QCD pair production

Bounds in the $\{m_{\phi}, f_{\phi}\}$ plane for each decay channel and for benchmark choices of the couplings

Luca Panizzi

Composite Higgs with partial compositeness in the top sector

Combining the bounds for pNGBs

Template example

Envelope of all bounds in the $\{m_{\phi}, f_{\phi}\}$ plane for each decay channel and for all the particles of a specific composite realisation QCD mass limits (only on m_{ϕ}) exclude the dotted lines.

VLQs - SM decays

Bounds of the order of the TeV, but the VLQs could also decay to new scalars

VLQs - exotic decays

No dedicated experimental searches so far

Constraints can be reduced (BRs to SM do not add up to 1) and potential for discoveries can be achieved with dedicated searches

Recasting of direct searches

Recasting of direct searches and SM measurements

Bounds from pair production of VLQs decaying to new scalars in the $\{M_{VLQ}, M_{\phi}\}$ plane for each scalar decay channel

Also, bounds from single production of VLQs decaying to new scalars in the $\{M_{VLQ}, M_{\phi}\}$ plane for specific benchmarks

Luca Panizzi

Composite Higgs with partial compositeness in the top sector

VLQs - exotic decays

bounds and projections from 1907.05894

Our goals

(and what can enter in the Snowmass report)

pNGBs

 Pair production through double pNGB-strahlung off Z (FCC-ee) or W or via VBF (LHC, FCC-hh), relevant if φ does not get a VEV

$$Z^{WV} \stackrel{i}{\leftarrow} \phi \qquad W, Z^{V} \stackrel{i}{\leftarrow} \phi \qquad W, Z^{V} \stackrel{i}{\leftarrow} \phi$$

 Z → γφ, h → Zφ and h → φφ in a clean background environment at FCC-ee Very light φ would require dedicated strategies (2004.09825)

Constraints from less-explored scenarios, or where LHC has low sensitivity

Our goals

(and what can enter in the Snowmass report)

VLQs

- Exotic decay of top partners $T \rightarrow b\phi^+$
- Inclusion of NLO corrections and large-width effects
- Systematic recasting of VLQ searches with projections for HL-LHC
- development of dedicated analyses for FCC-hh

Bounds and reaches in the mass-mass plane for different VLQ widths

Interplay with other groups

which kind of data is needed

The activity of our collaboration fits in the "Composite/Extra-dimension Resonance Benchmark" working group

Most of the plots presented in the previous slides cannot be unfolded for reinterpretation in different models. To do them, alongside others for different benchmarks/scenarios, **model-independent information** is required:

- Updated settings for FCC detectors (*i.e.* Delphes or SFS (2006.09387) cards)
- Background data for FCC
- Upper limits on the cross-sections as function of m_{ϕ} (QCD pair), in the $\{m_{\phi}, \text{coupling}\}$ (non-QCD pNGB) or $\{m_T, m_{\phi}\}$ planes (VLQ to pNGB) for individual processes with BR=100% (where relevant, also interference plots)

Model-dependent information can also be very useful for validation or recasts and for FCC projections:

- Cutflows for signal benchmarks and for specific signal regions
- Differential distributions for signal benchmarks

Interaction with experimental groups to assess which information to share