
pMSSM McMC code
Malte Mrowietz

11.11.2020

Overview
● https://github.com/mmrowietz/pMSSM_McMC

● Completely python2 based (if print statements are rewritten, it should work in
python3)

● Output stored in ROOT trees

● (very) simplistic interfaces to external tools SPheno, superiso, FeynHiggs

https://github.com/mmrowietz/pMSSM_McMC

How to run
● Get the code and numpy
● Install SPheno, superiso, FeynHiggs and compile the executables
● in mcmc.py, set homedir to code location

● execute mcmc.py with following required inputs:
○ "-m <runmode>": choices=["new","resume"]
○ “-o <output directory>”
○ “-i <input root file>” if run mode is resume, give path to input root file with chain to resume

● optional inputs:
○ “-n <number of points to run>” (default =1000): Number of points that the McMC runs for.
○ “-c <chain index>” (default=1): Index given to chain to uniquely identify it.
○ “-s <save interval>” (default=300): Save progress and move it to output directory after every save interval

worth of points. Prevent complete loss if job crashes

Scan ranges
● Scan ranges are set at the top of mcmc.py

● Do our tools work up to high scales needed for 100 TeV collider?

Output branches
● Tree branches are defined in tree_branches dictionary
● numpy is used to interface python types to ROOT types
● numpy container value needs to be set in McMC loop

Likelihood calculation: standard cases

symmetric uncertainty
asymmetric uncertainty

● Experimental value and uncertainties are inserted into dictionary in likelihood.py

● likelihood is calculated in
● observables is dictionary containing observable values keyed by observable name

(which must be the same as in likelihood_contributions dictionary)

● observables is dictionary containing observable values keyed by observable name
(which must be the same as in likelihood_contributions dictionary)

● If observables entry contains key “uncertainty”, it will be used instead of uncertainty in
likelihood_contributions (e.g. for Higgs mass)

● if observables entry contains key “special_case”, its handling has to be implemented
in get_likelihood function

Likelihood calculation: standard cases

observables[“<observable name>”] = {“value”:<observable value>,

 “uncertainty”:<point-based observable uncertainty>,

”special_case”:””}

value obtained for the point

if uncertainty is specified,
it will be used in likelihood
(e.g. Higgs mass)

an observable can be flagged for
non-standard handling
(e.g. superiso chi2)

Likelihood calculation: how to add a new one
1. Write an interface to required tool

2. In McMC loop, extract the value for the point and add the key-value pair to
observables dictionary before these lines:

3. If necessary, implemented the contribution to the likelihood in likelihood.py

4. (Add the likelihood to the tree_branches dictionary)

McMC run loop
Slightly different code depending on runmode=”new” or “resume”

Require a non-zero likelihood

Find a valid
pMSSM
point and
make McMC
decision

generate candidate
points until SPheno
does not complain

Replace Higgs sector, try new
candidate if FeynHiggs complains

Collect information
nessesary to likelihood
calculation, add entries
to observables
dictionary

Try new candidate if superiso
complains

McMC run loop

Not yet included and areas of improvement
● Run mode to start from non-random point

● Dark matter related constraints (costly in terms of computation time)

● Sampling from McMC (oversampling, undersampling)

● Code overhaul for efficiency

● Better interface to external tools? (in-memory I/O?)

