pMSSM McMC code

Malte Mrowietz 11.11.2020

Overview

- <u>https://github.com/mmrowietz/pMSSM_McMC</u>
- Completely python2 based (if print statements are rewritten, it should work in python3)
- Output stored in ROOT trees
- (very) simplistic interfaces to external tools *SPheno, superiso, FeynHiggs*

How to run

- Get the code and numpy
- Install SPheno, superiso, FeynHiggs and compile the executables
- in mcmc.py, set homedir to code location
 - 25 homedir = "/nfs/dust/cms/user/mrowietm/python_scan/pMSSM_McMC/"
 - 26 packagedir = homedir+"packages/"
 - 27 spnexe = packagedir+"SPheno-4.0.4/bin/SPheno"
 - 28 fhexe = packagedir+"FeynHiggs-2.16.1/bin/FeynHiggs"
 - 29 sisoexe = packagedir+"superiso_v4.0/slha.x"
 - 30 #sisochi2exe = packagedir+"superiso_v4.0/slha_chi2.x" #use all of the non-controversial low-energy resul
 - 31 sisochi2exe = packagedir+"superiso_v4.0/slha_chi2_reduced.x"#use only branching ratios in superiso chi2.
- execute mcmc.py with following required inputs:
 - "-m <runmode>": choices=["new","resume"]
 - "-o <output directory>"
 - "-i <input root file>" if run mode is resume, give path to input root file with chain to resume
- optional inputs:
 - "-n <number of points to run>" (default =1000): Number of points that the McMC runs for.
 - "-c <chain index>" (default=1): Index given to chain to uniquely identify it.
 - "-s <save interval>" (default=300): Save progress and move it to output directory after every save interval worth of points. Prevent complete loss if job crashes

Scan ranges

Scan ranges are set at the top of mcmc.py

```
12 #set up the parameter ranges

13 parameter_ranges ={}

14 for parameter in ["mu", "M1", "M2"]:

15 parameter_ranges[parameter] = (-4000, 4000)

16 for parameter in ["M3", "Mq1", "Mq3", "Mu1", "Mu3", "Md1", "Md3"]:

17 parameter_ranges[parameter] = (0, 10000)

18 for parameter in ["M11", "Mr1", "M13", "Mr3", "Mh3",]:

19 parameter_ranges[parameter] = (0, 4000)

20 for parameter in ["At", "Ab", "A1"]:

21 parameter_ranges[parameter] = (-7000, 7000)

22 parameter_ranges["tb"] = (2, 60)

23

24 width coefficient = 0.1 #the width coefficient of the gaussian for the mcmc step.
```

Do our tools work up to high scales needed for 100 TeV collider?

Output branches

- Tree branches are defined in tree_branches dictionary
- numpy is used to interface python types to ROOT types
- numpy container value needs to be set in McMC loop

```
37 #containers for the tree branches. Numpy arrays are used as an interface between python types and the root branches
38 tree branches = {}
```

```
39 tree_branches["slha_file"]={"container":TString(),"dtype":"TString"}
```

```
40 tree_branches["likelihood"]= {"container":np.zeros(1,dtype = float),"dtype":"D"}
```

```
41 tree_branches["iteration_index"] = {"container":np.zeros(1,dtype = int),"dtype":"I"}
```

```
42 tree_branches["accepted_index"] = {"container":np.zeros(1,dtype = int),"dtype":"I"}
```

```
43 tree_branches["chain_index"] = {"container":np.zeros(1,dtype = int),"dtype":"I"}
```

```
44 tree_branches["mtop"] = {"container":np.zeros(1,dtype = float),"dtype":"D"}
```

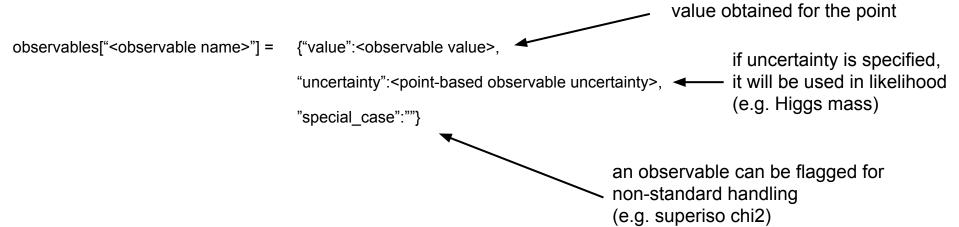
```
45 tree_branches["mbottom"] = {"container":np.zeros(1,dtype = float),"dtype":"D"}
```

```
46 tree_branches["alpha_s"] = {"container":np.zeros(1,dtype = float),"dtype":"D"}
```

```
47 tree_branches["mhiggs"] = {"container":np.zeros(1,dtype = float),"dtype":"D"}
```

```
48 for param in parameter_ranges.keys():
```

```
49 tree_branches[param] = {"container":np.zeros(1,dtype=float),"dtype":"D"}
```


- 50 tree_branches["superiso_chi2_stdout"]={"container":TString(),"dtype":"TString"}
- 51 tree_branches["superiso_stdout"]={"container":TString(),"dtype":"TString"}
- 52 tree_branches["chi2"]={"container":np.zeros(1,dtype=float),"dtype":"D"}
- 53 tree_branches["chi2_ndf"]={"container":np.zeros(1,dtype=int),"dtype":"I"}

Likelihood calculation: standard cases

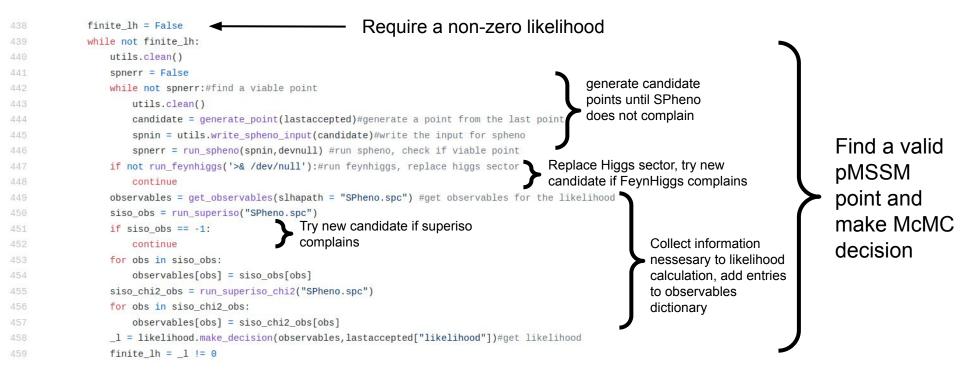
- Experimental value and uncertainties are inserted into dictionary in likelihood.py
- 6 likelihood_contributions ={}
- 7 likelihood_contributions["mtop"] = {"value":173.1,"uncertainty":0.9}
 Symmetric uncertainty
- 9 likelihood_contributions["alpha_s"] = {"value":0.1181,"uncertainty":0.0011}
- 10 likelihood_contributions["mhiggs"] = {"value":125.26}#good practise would be to cite from where
- 11 #superiso gives only the SUSY contribution to amu, thus it must be compared against delta amu
- 12 likelihood_contributions["a_muon"]={"value":26.8E-10,"uncertainty":4.3E-10}#http://pdg.lbl.gov/
- 13 likelihood_contributions["BR_B_to_tau_nu"]={"value":1.44E-04,"uncertainty":0.31E-04}#http://www
- 14 likelihood_contributions["BR_Ds_to_tau_nu"]={"value":5.48E-02,"uncertainty":0.23E-02}#http://pd
- 15 likelihood_contributions["BR_Ds_to_mu_nu"]={"value":5.5E-03,"uncertainty":0.23E-03}#http://pdg.
- likelihood is calculated in def get_likelihood(observables):
- observables is dictionary containing observable values keyed by observable name (which must be the same as in likelihood_contributions dictionary)

Likelihood calculation: standard cases

- observables is dictionary containing observable values keyed by observable name (which must be the same as in likelihood_contributions dictionary)
- If observables entry contains key "uncertainty", it will be used instead of uncertainty in likelihood_contributions (e.g. for Higgs mass)
- if observables entry contains key "special_case", its handling has to be implemented in get_likelihood function

Likelihood calculation: how to add a new one

1. Write an interface to required tool


397

458

- 2. In McMC loop, extract the value for the point and add the key-value pair to observables dictionary before these lines:
 - _l = likelihood.get_likelihood(observables)#get likelihood
 - _l = likelihood.make_decision(observables,lastaccepted["likelihood"])#get likelihood
- 3. If necessary, implemented the contribution to the likelihood in likelihood.py
- 4. (Add the likelihood to the tree_branches dictionary)

McMC run loop

Slightly different code depending on runmode="new" or "resume"

McMC run loop

458	_l = likelihood.make_decision(observables,lastaccepted["likelihood"])#get likelihood
459	finite_lh = _l != 0
460	if _1<0:
461	move +=1
462	<pre>if iter_ix == start+tend:</pre>
463	<pre>print "Made all "+str(tend)+" iterations, moving "+outname+" to storage"</pre>
464	<pre>outtree.BuildIndex("chain_index","iteration_index")</pre>
465	outtree.Write()
466	outroot.Close()
467	os.system(" ".join(["mv",outname,outdir]))
468	continue #point was not accepted
469	lastaccepted["likelihood"]=_1
470	<pre>lastaccepted["iteration_index"] = iter_ix</pre>
471	lastaccepted["accepted_index"] =lastaccepted["accepted_index"]+1
472	<pre>lastaccepted["chain_index"] = chainix</pre>
473	lastaccepted["superiso_chi2_stdout"] = observables["superiso_chi2_stdout"]["value"]
474	<pre>lastaccepted["superiso_stdout"] =observables["superiso_stdout"]["value"]</pre>
475	lastaccepted["chi2"] =observables["chi2"]["value"]
476	lastaccepted["chi2_ndf"]=observables["chi2_ndf"]["value"]
1-7-7	

477

Not yet included and areas of improvement

- Run mode to start from non-random point
- Dark matter related constraints (costly in terms of computation time)
- Sampling from McMC (oversampling, undersampling)
- Code overhaul for efficiency
- Better interface to external tools? (in-memory I/O?)