Adding NA61 Kaon production data to PPFX

Robert Kralik

November 6, 2020

University of Sussex NOvA & DUNE PPFX meeting

Motivation

- In the standard NOvA 3 flavour analysis neutrinos from kaons make up only a small portion of the total neutrino selection
- Plus the beam uncertainty has minimal impact thanks to the extrapolation from ND to FD
- In the sterile neutrino search we want to include sterile oscillation in the ND → can't use extrapolation method
 - Bigger influence of the beam uncertainty(ies)
- We look mostly at NC events which have higher contribution from neutrinos from kaons
- \blacktriangleright We want to include higher energies (up to 20 ${\rm GeV})$
 - Even more neutrinos from kaons

Neutrinos from kaons @ NOvA ND for NC selection

Simulation

Motivation

- Results from MINOS indicate the PPFX might miscorrect the "kaon region" by up to 30%
- We know that we don't have enough data for kaons in PPFX, and we believe this is behind the discrepancy
- We add 30% systematic uncertainty for all neutrinos from kaons on top of the PPFX systematic just to be sure
- Beam systematic uncertainty (PPFX+Kaon) is the highest overall systamatic in the current sterile neutrino search!

Horn-Off comparison

My results for NOvA (left) do not show the same trend. But we need to include sterile oscillations into the ND!!!

Adding NA61 Kaon production data

- UNIVERSITY OF SUSSEX
- I am going to focus on adding K production data from p-C interaction to the PPFX
- Currently we are using:
 - ▶ NA49 experiment's results for $pC \rightarrow K^{\pm}X$ @ 158GeV for $x_F < 0.2$
 - -low statistics
 - ► MIPP thin target ratios K/π @ 120GeV multiplied by NA49 results
- There are published results from 2015:
 - ⋆[±], K[±], K⁰_S, ∧ and p production in p-C at 31GeV https://arxiv.org/abs/1510.02703
- But also yet unpublished results which will be very interesting for NOvA (and DUNE)
 - ► Hadron production from p-C @ 120GeV
 - NOvA-era NuMI replica target (collected in 2018)

NA61 data coverage

▶ NA61 uses different binning than NA49: (p, θ) VS (x_F, p_T)

NA61 data coverage - NA49 comparison

UNIVERSITY OF SUSSEX

There is much larger data coverage for "direct" kaon prodcution XSec measurement

NA49 VS NA61 binnings - NA61 K⁺ production coverage

NA61 data coverage - NA49 and MIPP comparison

9/14

 MIPP extends the NA49 coverage, but this brings with it additional uncertainties

NA49 VS NA61 binnings - NA61 K⁺ production coverage

NA61 data coverage - NA49 and MIPP comparison

▶ Very similar results for K⁻ (but a bit different NA61 coverage)

NOvA ND K^+ phase space

• Phase space for K^+ without any selection

UNIVERSITY OF SUSSEX

NOvA ND K^- phase space

• Phase space for K^- without any selection

115

To do list

- Overlay the phase space plots with the coverage plots
- \blacktriangleright Comparison between NA61 and MC @ 31 ${\rm GeV}$ with G4HP
- Scale NA61 data at centers of bins and compare with NA49 / MIPP*NA49
- Figure out what is the best idea for the energy scaling and bin change
- Thanks to Antoni Aduszkiewicz and Leo for giving me proposals for how to deal with different binnings
 - Antoni proposes we don't try to change the NA61's binning, but instead compare it directly with MC in the same variables and change only the MC/data ratio

Backup