

DUNE Flux – Correlation Studies

Deepika Jena 6 Nov 2020

Fractional Uncertainty

Interact	ions covered by
externa	l data
	pC -> π X
	рС -> К Х
	pC-> Nucleon X

There was no information from the external data related to bin to bin correlations. Thus bin-to-bin correlations are assumed to be 100 % .

How it is done in PPFX ? – Previous SLIDE

The correlation and other data are kept in a plain database file in following ways :

- The parameter file contains the input data from results of studies to make interpolations and correlations between bins.
- For uncorrelated data, the central value and its uncertainty are provided as single values or a list of values.
- Correlated data requires a list of central values per bin, a list of statistical errors and a covariance matrix of the systematic errors.
- However, for these interactions : pC -> π X , pC -> K X, pC-> Nucleon X the elements of cov matrix becomes very large. Due to the many values it becomes impossible to process.
 - So in order to introduce correlations a trick is made where 100% correlation is to use the same random shift value per universe for all bins of a dataset.

🛠 Fermilab

NA61 phase space

- Split this into finer bins.
- Map the NA61 phase space onto the neutrino energy phase space.

Splitting up the phase space

This is the binning scheme taken into account for thin target pc->pi interactions, and respective plots for fractional uncertainties and correlations matrices are made.

Bin 1 : 0.02 < xf <= 0.2 Bin 2 : 0.02 < xf <= 0.2 Bin 3 : 0.02 < xf <= 0.2	and 0.025 < Pt <= 0.15 GeV/c and 0.15 < Pt <= 0.3 GeV/c and 0.3 < Pt <= 0.6 GeV/c	Focusing region
Bin 4 : 0.2 < xf <= 0.3	35 and 0.02 < Pt <= 0.2 GeV/c	high
Bin 5 : 0.35 < xf <= 0.3	.5 and 0.02 < Pt <= 0.2 GeV/c	energy tail

Bin 6: Everything else

Fractional Uncertainties

Default Case – (numu) near detector :

Uncorrelated Case – (numu) near detector :

Default Case – (numu) Far detector :

Uncorrelated Case – (numu) Far detector :

Covariances

Default Case – (numu) near detector :

Uncorrelated Case – (numu) near detector :

Correlations

Each small block corresponds to bins of energy with bin boundaries [0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,7,8,12,16,20,40,100] GeV for all sign and all flavor of neutrinos.

Default Case – (numu) near detector :

Uncorrelated Case – (numu) near detector :

🛠 Fermilab

28 11/6/20 Deepika Jena

Correlation Matrix [ND $\nu_{\mu}][0.2 < x_{_F} \leq 0.35;\, 0.02 < p_{_T} \leq 0.2 \; GeV/c$

🛑 🗱 Fermilab

Correlation Matrix [ND ν_{μ}][0.35 < x $_{F} \le 0.5$][0.02 _{T} \le 0.2 GeV/c]

;orrelation Matrix [ND $\nu_{\mu}][x_{_F}$ \langle 0.02 and x $_{_F}$ \rangle 0.5; p $_{_T}$ \langle 0.025 and \langle p $_{_T}$ \rangle 0.15 GeV/c

;orrelation Matrix [ND $\nu_{\mu}][x_{_F}$ \langle 0.02 and x $_{_F}$ \rangle 0.5; p $_{_T}$ \langle 0.025 and \langle p $_{_T}$ \rangle 0.15 GeV/c

FAR Detector Results, antinu results I have them with me. Will update my talk later.

Correlations

Correlation Matrix

- Fluxes are highly correlated across most bins
- Focusing regions and high energy bins are the exceptions
- Depends strongly on correlations of underlying datasets; in many cases, we have to guess at these.

Optimized

48 07.28.17 Laura Fields I LBNF Hadron Production

Correlation for numu far detector pc->Pi - Default

Correlation Matrix FD (ν_{μ})

Correlation for numu far detector pc->Pi – No Corr

Correlation Matrix FD (v_{μ})

😤 Fermilab

Correlations decreases, more significantly in the higher bin regions.

