Neutrinoless Double Beta Decay: Beyond the "Tonne-Scale" - I ACFI virtual workshop, Dec 9-11 2020

Panel Discussion: Setting benchmarks beyond the tonne scale

Vincenzo Cirigliano Los Alamos National Laboratory

Preamble

- We simply don't know the origin of neutrino mass and the scale Λ associated with LNV. Therefore, ton-scale (and beyond) $0\nu\beta\beta$ searches (T_{1/2} >10²⁷⁻²⁸ yr) have huge discovery potential.
- But funding agencies like benchmarks...
- Benchmarks make sense within specific scenarios of LNV and neutrino masses.
- Organizing principle? EFT ~ scale of LNV (related to mass of new particles inducing LNV, such as V_R's)

I/Coupling

Some possible benchmarks

- High scale seesaw (crab plot): natural target is $m_{\beta\beta} \sim meV$. Falsifiable correlations with other probes of V mass. Future data can unravel new LNV sources or physics beyond " Λ CDM + m_{ν} "
- LNV in multi-TeV region: minimal target is to match the sensitivity of LHC (and future colliders) in same-sign dilepton. Best illustrated in simplified models motivated by clear connection to V mass: minimal LRSM, leptoquarks, type I+II, I+III seesaw.
- General type-I seesaw (varying M_R): minimal UV complete scenario + extension with EFT interactions beyond Yukawa. Connection to cosmological implications and other observables (meson decays, collider) relatively mature.

Related challenges

• Controlled theory uncertainty: for example, given a measurement (bound) on $T_{1/2}$, what is the corresponding $m_{\beta\beta}$? A lot to do, but exciting prospects thanks to advances and cross fertilization in EFT, lattice QCD, and nuclear structure

- Model diagnosing: what do we learn about the underlying LNV model from a positive (null) experimental result? Tools:
 - Within $0\nu\beta\beta$: total rate variation with isotope; differential rate: single electron spectra and electron's angle.
 - 0νββ vs other probes: meson & lepton decays, collider, cLFV,
 ...

Some relevant Lol's

(Very incomplete list)

Bridging particle and nuclear physics for neutrinoless double beta decay with EFTs

Neutrinoless double beta decay in effective field theory and simplified models

W. Dekens^a, J. de Vries^{b,c}, R. Ruiz^d

 ^a Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
 ^b Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA 01003
 ^c RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

^d Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, Chemin du Cyclotron, Louvain la Neuve, B-1348, Belgium

Authors

Vincenzo Cirigliano (Los Alamos National Laboratory), cirigliano@lanl.gov * Zohreh Davoudi (University of Maryland), davoudi@umd.edu Wouter Dekens (UC San Diego), wdekens@ucsd.edu Jordy de Vries (UMass Amherst), jdevries@umass.edu Jonathan Engel (UNC Chapel Hill), engelj@physics.unc.edu Xu Feng (Beijing), xu.feng@pku.edu.cn Michael L. Graesser (Los Alamos National Laboratory), mgraesser@lanl.gov Luchang Jin (UConn), luchang.jin@uconn.edu Emanuele Mereghetti (Los Alamos National Laboratory), emereghetti@lanl.gov * Amy Nicholson (UNC Chapel Hill), annichol@email.unc.edu Saori Pastore (Washington University St. Louis), saori@wustl.edu Michael Ramsey-Musolf (UMass Amherst and Shanghai), mjrm@physics.umass.edu Ubirajara van Kolck (Arizona and Orsay), vankolck@ipno.in2p3.fr Andre Walker-Loud (Lawrence Berkeley National Laboratory), walkloud@lbl.gov

* Corresponding author