Panel discussion
 Uncovering the Mechanism of $0 \nu \beta \beta$

Wouter Dekens

UCSanDiego

What if $0 \nu \beta \beta$ is measured?

Can we pinpoint the responsible mechanism?

- A measurement in a single isotope could be due to any operator
- Large number of possible operators at $d=5,7,9$
- Need additional measurements to single out the responsible term

Handles in $0 v \beta \beta$ measurements

- Decay rates of multiple isotopes
- Angular/energy distributions of the outgoing electrons
- Mainly sensitive to the leptonic structure that the operators induce
- Can disentangle several of the complete set of operators
- Namely, $C_{V L, V R}^{(6)}$

What if $0 \nu \beta \beta$ is measured?

Can we pinpoint the responsible mechanism?

Other observables

- Collider (LHC) signatures
- Sensitive to the same operators that induce $0 \nu \beta \beta$
- Sensitive when $E \sim \sqrt{s} \sim \Lambda$, expected breakdown of the EFT

- LNV meson decays, e.g. $K^{+} \rightarrow \pi^{-} l^{+} l^{+}$
- Charged lepton flavor violation, e.g. $\mu \rightarrow e \gamma, \quad \mu \rightarrow e$ conversion
- Some of these are very sensitive probes
- Induced by independent couplings in the EFT

What if $0 \nu \beta \beta$ is measured?

Can we pinpoint the responsible mechanism?
Other observables

- Collider (LHC) signatures
- Sensitive to the same operators that induce $0 \nu \beta \beta$
- Sensitive when $E \sim \sqrt{s} \sim \Lambda$, expected breakdown of the EFT

- LNV meson decays, e.g. $K^{+} \rightarrow \pi^{-} l^{+} l^{+}$
- Charged lepton flavor violation, e.g. $\mu \rightarrow e \gamma, \quad \mu \rightarrow e$ conversion
- Some of these are very sensitive probes
- Induced by independent couplings in the EFT

Connecting these probes to $0 \nu \beta \beta$ requires

- Flavor assumptions/explicit models that go beyond the pure EFT
- Knowledge of NMEs / LECs
- Improved NMEs/LECs would help falsifying/verifying BSM models

Related LOIs

$0 \nu \beta \beta$ and LHC signatures in simplified models

Snowmass2021 - Letter of Interest

Neutrinoless double beta decay in effective field theory and simplified models
W. Dekens ${ }^{a}$, J. de Vries ${ }^{b, c}$, R. Ruiz ${ }^{d}$
${ }^{a}$ Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
${ }^{b}$ Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA 01003
${ }^{c}$ RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
${ }^{d}$ Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, Chemin du Cyclotron, Louvain la Neuve, B-1348, Belgium

Link to pdf

Determination of $0 \nu \beta \beta$ NMEs / LECs

Nuclear Matrix Elements for BSM Searches from Lattice QCD
Zohreh Davoudi ${ }^{1}$, William Detmold ${ }^{2}$, Phiala E. Shanahan ${ }^{2}$, Marc Illa ${ }^{3}$, Assumpta Parreño ${ }^{3}$, and Michael L. Wagman ${ }^{4}$
${ }^{1}$ Department of Physics and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA
${ }^{1}$ RIKEN Center for Accelerator-based Sciences, Wako 351-0198, Japan
${ }^{2}$ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{3}$ Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, E08028-Spain
${ }^{4}$ Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Link to pdf

Bridging particle and nuclear physics for neutrinoless double beta decay with EFTs

Authors

Vincenzo Cirigliano (Los Alamos National Laboratory), cirigliano@lanl.gov *
Zohreh Davoudi (University of Maryland), davoudi@umd.edu
Wouter Dekens (UC San Diego), wdekens@ucsd.edu
Jordy de Vries (UMass Amherst), jdevries@umass.edu
Jonathan Engel (UNC Chapel Hill), engelj@physics.unc.edu Xu Feng (Beijing), xu.feng@pku.edu.cn
Michael L. Graesser (Los Alamos National Laboratory), mgraesser@lanl.gov Luchang Jin (UConn), luchang.jin@uconn.edu
Emanuele Mereghetti (Los Alamos National Laboratory), emereghetti@lanl.gov * Amy Nicholson (UNC Chapel Hill), annichol@email.unc.edu
Saori Pastore (Washington University St. Louis), saori@wustl.edu
Michael Ramsey-Musolf (UMass Amherst and Shanghai), mjrm@physics.umass.edu Ubirajara van Kolck (Arizona and Orsay), vankolck@ipno.in2p3.fr
Andre Walker-Loud (Lawrence Berkeley National Laboratory), walkloud@lbl.gov

