

Perspective on 0vββ **Program in China**

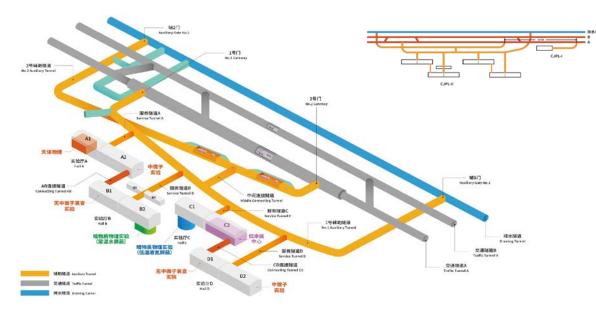
Huan Zhong Huang

Department of Physics and Astronomy UCLA

December 11, 2020 @ACFI/Snowmass Workshop

Many thanks to Q. Yue, Z. Zeng, Z.Z. Xing, L.J. Wen, N. Xu, K. Han, L. Ma, H. Qiu, H.Q. Zhang

CJPL-II current status



CDEX in C1

PandaX in B2

JUNA in A1

Construction of Dark Matter Exp: CDEX-100kg and PandaX-4T JUNA (Astro-Nuclear)

Future and Timeline

- Excavation and reinforce tunnel, 2020.12-2021.12
- Interior decoration, 2021. 1-2023. 12
- Ground laboratory, 2021. 1-2022. 6
- Equipment and installations: 2021. 12-2023.12

Underground Exp Hall (Designed)

Ground Lab Building Near Xichang Airport

CJPL $0\nu\beta\beta$ Program

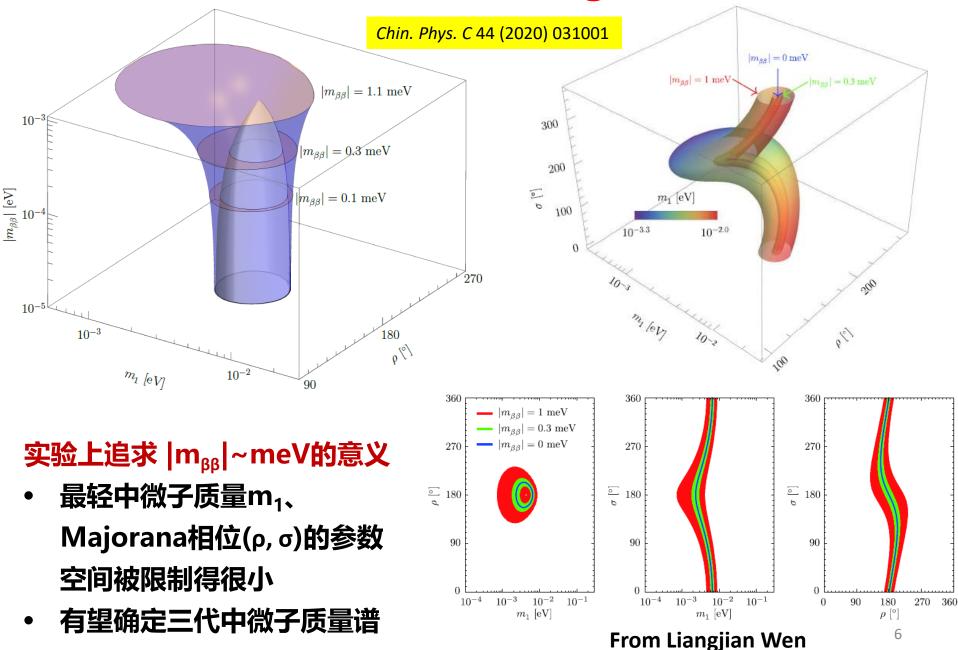
Detector Technologies Under R&D:

LEGEND – HP⁷⁶Ge technology (Detector production in China)

CUPID – Li₂¹⁰⁰MoO₄ Crystal Bolometer technology (LMO crystal production in China)

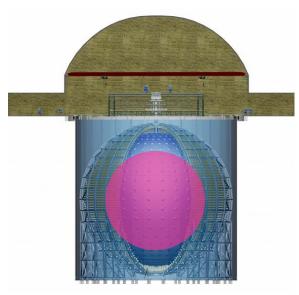
HP TPC Gas - ¹³⁶Xe gas with micromegas readout (PandaX III) -- ⁸²SeF₆ gas with ion drift and topmetal pixel readout

Demonstrators will be needed at CJPL Ton-scale detector down selection may be a few years away


Enrichment in China ?

At a recent meeting with Institute of Physical and Chemistry Engineering Regarding Se-82 and Mo-100 enrichment:

To build up a facility with production capability of 100 kg/year ~ \$10M investment !


This is an issue that needs to be worked out.

Into the NH Region

Outlook on Technology Advances

Brute Force Approach:

50 Tons ¹³⁶Xe (5years): > 1.8×10²⁸ yrs

¹³⁰Te Doping; 100 Tons possible.

Issues:

Depth at JUNO + Muon veto enough? Radiopurity of Te doping? Liquid Scintillator with Te doping -- stability -- light transmission

JUNO-ββ (1800 m.w.e.)

2030+

Can CUPID-like technology be viable for x10 increase in sensitivity beyond IH region?

- Increase the detector mass alone not viable;
- Further background reduction from Crystal and Copper;
- **Improvement of pile-up rejection;**
- Multiple super-size detectors.

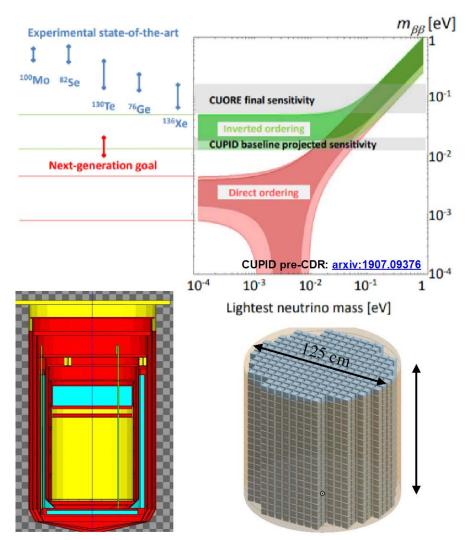
CUPID-China Collaboration

Many thanks to the CSNSM Orsay group and CUPID-Mo Collaboration, Milan-Bicocca, UCB, LNGS Groups for helping us to get started.

CUPID-China

- o Fudan University*
- Beijing Normal University*
- Shanghai Institute of Applied Physics
- Shanghai Institute of Ceramics
- Shanghai JiaoTong University*
- o Tsinghua University
- University of Science and Technology of China*
- o Ningbo University

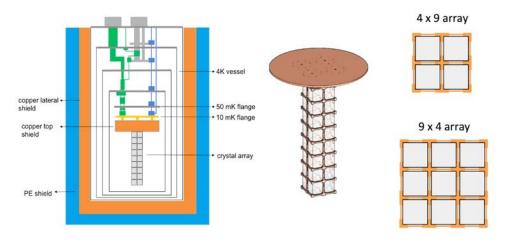
Thanks


CUPID-1T: the future bolometric experiment

CUPID-1T: HALLMARKS

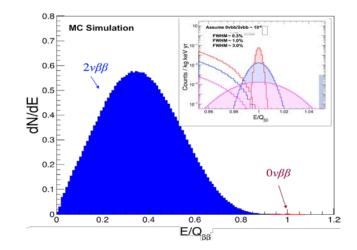
- 1000 kg of ¹⁰⁰Mo in a new cryostat or multiple facilities world wide
- > Sensitivity: $m_{\beta\beta} < 10 \text{ meV}$ (NH)

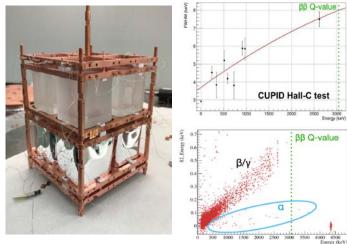
POTENTIAL EXPANSIONS


- Large volume cryogenic facilities in multiple Underground Labs worldwide
- ➤ ~1900 kg of LMO

From Danielle Speller's Presentation at Towards CUPID-1T. Snowmass 2021 Planning workshop

A CUPID-CJPL detector can fit in the CUPID future as envisioned

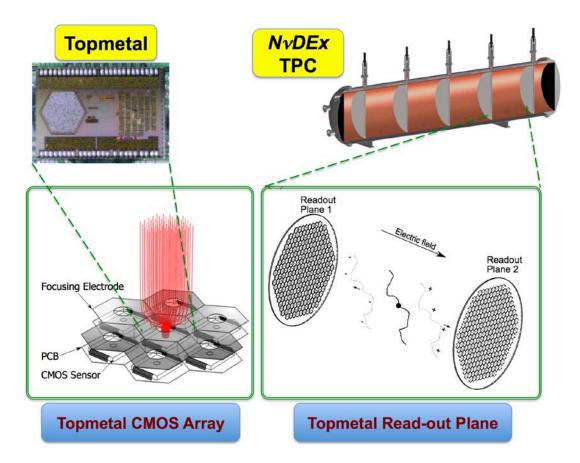

CUPID-CJPL Demonstrator



CUPID-CJPL demonstrator conceptual design

Single crystal	Array structure	Total mass [kg]
45×45x45 mm ³ 280 g (LMO)	4x9 (9x4)	10

Goal: Using Chinese LMO crystals to achieve similar energy resolution, alpha rejection and background index as achieved by CUPID-Mo and Hall-C Test



CUPID Hall-C test (LNGS)

(BI(ROI)<10⁻³cts/keV/kg/yr)

NvDEx Concept

Maintain tracking capability (pixel readout) and Achieve energy resolution of ~1% with ion drift/no avalanche/low noise readout