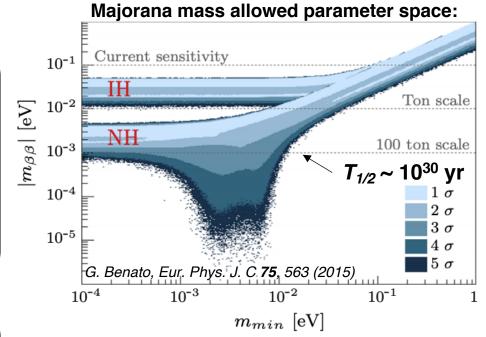
kton-scale Xe TPCs for $0\nu\beta\beta$


- M. Heffner (LLNL) D. Moore (Yale)
- While ton-scale experiments have significant discovery potential, it is possible that detectors capable of reaching 10³⁰ yrs will ultimately be needed to fully cover allowed parameter space
- An exposure of ~3 ktonne-yr is needed to observe 10 events if $T_{1/2} \sim 10^{30}$ yrs

Primary challenge is to procure ¹³⁶Xe in required quantities:

- Existing supply chain (steel industry) suitable for ~5 ton, but not for 0.1-1 kton
- Direct capture from air (adsorptive techniques) may present alternative path
 - Xe market price >10⁵ times minimum thermodynamic separation cost
 - Direct capture of Xe on small scale for tracking radioisotopes is standard technique
- R&D effort exists, but pace could be accelerated substantially (industrial production of adsorbents, leverage CO₂ capture developments)
- Could decouple scientific demand from industry, and enable medical technologies for lung imaging and anesthesia

Xe TPCs present an attractive path to reaching 10³⁰ yr if Xe could be procured with viable cost:

- Advantages relative to liquid scintillators:
 - Energy resolution $\lesssim 0.5\% \rightarrow$ avoid $2\nu\beta\beta$ backgrounds ~ σ^6
 - Detector fully consists of ¹³⁶Xe \rightarrow avoid solar ν backgrounds
 - High purity of Xe (self-shielding) and in situ purification (²²²Rn biggest challenge)

Investments in Xe procurement technologies may provide path to 10^{30} yrs ($m_{\beta\beta} \sim 1$ meV)!