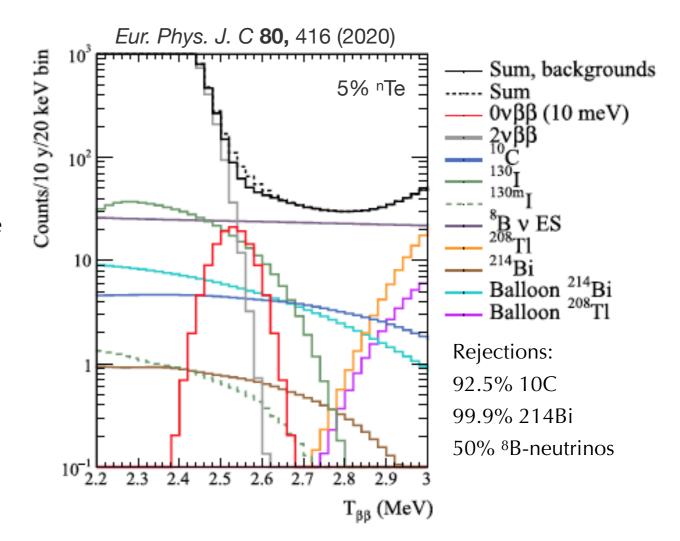
Neutrinoless Double Beta Decay: Beyond the "Tonne-Scale" Panel 3: "Experiments Beyond the Tonne-Scale: Background Challenges"

Valentina Lozza



LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Background challenges for future generation experiments (Liquid scintillator focus):

* Cosmogenic backgrounds:

- * nuclides produced by n, p and muons.
 - * material and experiment dependent (full spectrum vs single gammas)
 - * large uncertainty in the production cross sections were the inputs for dedicated experimental campaigns (summary in Universe 2020, 6(10), 162, <u>https://doi.org/10.3390/</u> <u>universe6100162</u>)
 - * Mitigation techniques include:
 - deep underground storage and experiment location
 - * purification of material (if possible UG)
 - shielding during storage

∗ 10**C**

- Unavoidable in liquid scintillator experiments
- * Mitigation techniques include:
 - * deep underground location to reduce μ flux
 - * rejection techniques based on 3-fold coincidence technique
 - * rejection based on machine learning approach
 - * At worse half-life sacrifice (short $T_{1/2}$)

* (α ,**n**) and (α ,**n** γ) reactions

- * in liquid scintillator experiments the contamination from ²¹⁰Po can be a large source of alpha particles
- * prompt neutron scattering and delay neutron capture are both a potential background source
- * Large uncertainties in reaction cross sections and disagreements among the codes available call for a measurement campaigns and code's review
 - * Loi: https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1_CF0-NF5_NF0-RF4_RF0-AF5_AF0-IF9_IF0_Shawn_Westerdale-052.pdf

*** Solar neutrinos:**

- * ⁸B Solar neutrino's elastic scattering in the target material is potentially the largest background (together with the $2\nu\beta\beta$) in the ROI for large liquid-scintillator based experiments
 - * A powerful tool for the rejection of this background is the separation between Cherenkov and scintillation light
 - * Technology developments include slow scintillator, water-based scintillator, dichroicons
 - * LOIs <u>https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF10_NF5_Steve_Biller-015.pdf</u>
 - * <u>https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF10_NF5-</u> <u>IF2_IF0_dichroicon-066.pdf</u>
- * Background induced by Charge Current interactions on target DBD isotopes
 - * Initial evaluation of expected rates are available in the literature: Papers: AIP Conf. Proc. 1894, 020008 (2017); <u>https://doi.org/10.1063/1.5007633</u>, Phys. Rev. C 89, 055501 (2014) https://doi.org/10.1103/ PhysRevC.89.055501
 - * A background is both the electron emitted in the reaction (from ⁸B) and the produced nuclide
 - * Tagging techniques are challenging due to the long $T_{1/2}$

Dec. 10, 2020

V. Lozza, Background Challenges Panel