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CMOS charge sensor array for TPC 
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• LBNL LDRD funded (FY16,17)
• <30e- noise per pixel (CMOS electrical test)
• Should reach 1% FWHM without charge 

multiplication
• In-gas validation in (slow) progress
• Can detect drifting ions directly.  May enable 82SeF6 

as a detector medium
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D.R. Nygren 2007 J. Phys.: Conf. Ser. 65 012021
M. An et al 2016 NIMA 810, 144
D.R. Nygren et al 2018 JINST 13 P03015
Y. Mei et al arXiv:2010.09226

• Scaling up to larger size while keeping spatial resolution 
means drastic increase in channel number

• With or without charge multiplication, or SiPM array
• Fill the plane with CMOS sensor
• Use bonding pad for charge collection
• Amplify and digitize on the spot
• CMOS sensors talk to neighbors to form a network
• In-chip regulation of power, eliminating external 

components (reduce radioactivity)
• Economy of scale: leverage standard industrial processes 
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Deep cryogenic CMOS
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Bradford Welliver, LBNL CPAD 2018/12/09
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Bolometers & NTDs
• Low heat capacity — very 

temperature sensitive 

• Neutron transmutation doped 
(NTD) Ge sensor 

• Resistance very sensitive to 
temperature 

• Method has good energy 
resolution 

• NTD meet technical needs for 
CUPID bolometers
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Absorber Crystal 
(TeO2) 

Thermistor
(NTD-Ge)

Thermal coupling 
(PTFE)

Heat bath ~10 mK 
(Copper)

Energy 
release

Si Heater (ref. 

NTD Ge Thermistor

CUORE Pulse

ΔT = Eev

Ccrys

C−1 ≈ 100μK
MeV

τ = C
G

∼ 1sR = R0e T0/T

NTD, TES in CUORE/CUPID, cryogenic sensors in general

Bradford Welliver, LBNL CPAD 2018/12/09

TES Requirements
• Change in TES current response is relatively large… 

• …but absolutely small 

• Use SQUIDs to amplify signal 

• Default operation is 1 SQUID per TES 

• Requires magnetic shielding 

• Minimize noise by moving SQUIDs closer to TES 

• Power dissipation 

• Magnicon SQUID: 1 nW 

• Shunt Resistor: 20 pW 

• Scaling up to CUORE sized electronics would require 
O(μW) cooling power!
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Problem: at scale, it is highly undesirable to run thousands 
or more wires, meters long, from Troom to TmK

• Trouble with heat load and feedthroughs.
• Noise and interference.
• Sheer complexity.
Solution: electronics (CMOS) at 4K, 1K or below, as close 
as possible to the sensors.
• Amplify and transform impedance as early as possible
• Multiplex or digitize early, reduce the number of lines.
• Actively drive the cables.
This is a common solution for many deep cryogenic 
detector systems.
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• LBNL LDRD funded (FY20,21)
• Basic devices work down to mK
• Extremely low power design is key

R.G. Huang et al 2020 JINST 15 P06026

TSMC 180nm CMOS


