New Physics in double-Higgs production at future lepton colliders.

Carlos Henrique de Lima^a, Andres Vasquez Tocora^{b, c} and Alberto Tonero^a

Carleton University^a, Universite catholique de Louvain^b and IFT-UNESP^c

- 1. Motivation
- 2. SMEFT
- 3. Sommerfeld Enhancement

Motivation

Motivation

• $e^+e^- \rightarrow hh$ is a loop-induced process.

Tiny SM cross-section

Good place to look for new physics!

SMEFT

We study the sensitivity of the di-Higgs production to new physics parametrized by the interactions¹:

$$\mathcal{L} = \frac{c_{e\varphi}}{\Lambda^2} \left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) \bar{l}_L \varphi e_R + \frac{c_{et}}{\Lambda^2} \epsilon_{ij} \left(\bar{l}_L^i e_R \right) \left(\bar{q}_L^j t_R \right)$$
(1)

Figure 1: Diagrams contributing to the $e^+e^- \to hh$ process coming from the Lagrangian in eq. 1

¹[Vasquez, Degrande, Tonero & Rosenfeld, 2019]

Bounds on SMEFT operators

We compute the cross-section as:

$$\sigma = \sigma_{SM} + \sigma_{EFT} \tag{2}$$

with

$$\sigma_{EFT} \sim \mathcal{O}(c_{e\varphi}^2) + \mathcal{O}(c_{e\varphi}c_{et}) + \mathcal{O}(c_{et}^2)$$
(3)

The exclusion regions are computed through a $\chi^2\mbox{-distribution}$ analysis.

The benchmark setups for future colliders taken into account are

Benchmark	Experiment	\sqrt{s} (GeV)	<i>L</i> (ab ⁻¹)
1	FCC-ee	350	2.6
2	CLIC	380	0.5
3	ILC	500	4
4	CLIC	1500	1.5
5	CLIC	3000	3.0

Figure 2: Exclusion regions at 95% CL for the different benchmarks.

Benchmark	Experiment	\sqrt{s} (GeV)	$L (ab^{-1})$	$ c_{e\varphi}/\Lambda^2 (\text{TeV}^{-2})$	$ c_{et}/\Lambda^2 (\text{TeV}^{-2})$
1	FCC-ee	350	2.6	< 0.003 (< 0.004)	< 0.116 (< 0.146)
2	CLIC	380	0.5	< 0.004 (< 0.006)	$< 0.143 \ (< 0.184)$
3	ILC	500	4	< 0.003 (< 0.004)	< 0.068 (< 0.083)
4	CLIC	1500	1.5	< 0.003 (< 0.003)	< 0.027 (< 0.035)
5	CLIC	3000	3.0	< 0.002 (< 0.002)	< 0.012 (< 0.015)

 Table 1:
 95 % CL intervals for each operator coefficients.

The bounds on c_{et} probe scales of the order $\mathcal{O}(10 \text{ TeV})$ while the $c_{e\varphi}$ operator probes scales of the order $\mathcal{O}(1 \text{ TeV})$.

The operator c_{et} has stringent bounds in the process $e^+e^- \rightarrow t\bar{t}$: of the order $\mathcal{O}(10^{-3} \,\mathrm{TeV}^{-2})^2$. The operator $c_{e\varphi}$ is constrained by using measurements in the $h \rightarrow e^+e^-$, of the order of $\mathcal{O}(10^{-4} - 10^{-3})$.

²[Durieux, Perello, Vos & Zhang, 2018]

Sommerfeld Enhancement

Light singlet SM extension

• If a new light scalar ϕ couples to the Higgs in the low energy:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m_{\phi}^2}{2} \phi^2 - \kappa \phi h^2 \,. \tag{4}$$

 The exchange of φ in the final state generates a yukawa potential in the non-relativistic limit for the Higgs.

Figure 3: Recursion Relation for the ladder type diagrams for the ϕ exchange.

Sommerfeld Enhancement

This can generate a Sommerfeld like enhancement³ on the cross-section:

$$\sigma(e^+e^- \to hh) = \sigma_{\rm SM}(e^+e^- \to hh)R(E)\,,\tag{5}$$

Figure 4: Preliminary plot for the cross-section enhancement.

³Similar effect as the one in $e^+e^- \rightarrow t\bar{t}$ [1990, M.Strassler and M.Peskin] and $e^+e^- \rightarrow t\tilde{t}$ [1992, V.Khoze, V.S Fadin and I.I Bigi]

- The SM $e^+e^- \rightarrow hh$ cross-section is so small and a enhancement due to new physics can potentially be probe near threshold. (Relevant for ILC at 250GeV, $L = 4 \text{ ab}^{-1}$)
- We can potentially probe this enhancements in other channels like VBF, Zhh...
- This can be extended to different effective operators for the higgs-electron interaction that would in principle give different enhancement factors.

Backup

Green Function and Green function Equation

The green function equation for the Sommerfeld enhancement in this case is:

$$\left[-\frac{\nabla}{m_h} - E - i\Gamma_h + V(r)\right]\partial^i G(E, |\vec{r} - \vec{r}'|) = i\partial^i \delta^3(\vec{r} - \vec{r}').$$
(6)

$$R(E) = \frac{\nabla^2 \operatorname{Im} G(0,0)}{\nabla^2 \operatorname{Im} G_{\mathsf{free}}(0,0)}$$
(7)

Figure 5: Optical Theorem.