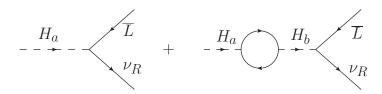
Exploration of a TeV-Scale Higgs Troika Scenario for Baryon Asymmetry

Matthew Sullivan¹, Hooman Davoudiasl¹, Ian M. Lewis²


¹Brookhaven National Laboratory ²University of Kansas

November 12, 2020

- Standard Model (SM) has three generations of fermions but only one Higgs doublet - why?
- We propose adding two more Higgs doublets
- More Higgs doublets means more Yukawa couplings
- Also add three right handed neutrinos, tackling neutrino masses
- General Troika framework covered in Phys. Rev. D 101, 055010 (arxiv:1909.02044)

- Sakharov conditions
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium
- Standard Model has non-perturbative sphalerons that violate baryon number
- Yukawa couplings can give CP violation
- The decay of heavy Higgses in the early universe can give interactions out of equilibrium

The General Baryogenesis Mechanism

- Before EW symmetry breaking, a population of heavy Higgs doublets H_a is created by the decay of a heavy modulus
- We use an asymmetry of decays of H_3 into a lepton doublet and right-handed neutrino:

$$\varepsilon \equiv \frac{\Gamma(H_a \to \bar{L}\nu_R) - \Gamma(H_a^* \to \bar{\nu}_R L)}{2\Gamma(H_a)} \tag{1}$$

- Washout constraints for light mediators make using H_1 difficult
 - This is why we need two heavy doublets for our mechanism

Experimental Avenues

- Search for heavy scalars at colliders
 - Dipole moments
 - Flavor-changing neutral currents
- Previous work: new doublets, masses around 1-2 TeV, couple primarily to leptons
 - Limited focus to pair production of heavy scalars
- Current work: new doublets, masses of a few TeV, coupling significantly to light quarks
 - Can get $\mathcal{O}(0.1)$ couplings to first or second generation quarks (Egana-Ugrinovic, Homiller, Meade, Phys. Rev. D 100, 115041)
 - Opens up single-production of scalars
- Also potential low energy precision physics prospects

- Three Higgs doublets can generate the baryon asymmetry of the universe
- No first order phase transition is necessary, unlike electroweak baryogenesis
- High energy search avenue of scalar production
- Also potential low energy precision physics prospects

Thank you!