Theory working group

Julian Heeck

Mu2e-II Snowmass21 Workshop VI

12/9/2020

Theory working group

- Julian Heeck (University of Virginia)
- Lorenzo Calibbi (Nankai University)
- Members:
 - Robert Szafron (CERN, soon BNL)
 - Yuichi Uesaka (Kyushu Sangyo University)
- Mailing list: mu2eii-theory@fnal.gov

Comments, questions, and members welcome!

Can theory predict $\mu \rightarrow e$ rates?

Lepton flavor violation

- LFV accidentally (?) suppressed in SM due to $m_{\nu} \ll m_{e}.$
- New physics can easily generate LFV, e.g. via

$$\mathsf{L}_{\mathsf{d}=\mathsf{6}} = \frac{\mathsf{c}_{\mathsf{i}\mathsf{j}}}{\Lambda^2}\mathsf{m}_{\mathsf{i}}\overline{\ell}_{\mathsf{i}}\sigma^{\alpha\beta}\ell_{\mathsf{j}}\mathsf{F}_{\alpha\beta} + \dots$$

• Most models can suppress LFV arbitrarily via

$$c_{ij} \rightarrow \delta_{ij}$$
 or $\Lambda \rightarrow \infty$.

• Very few models give (testable) prediction of LFV without any loopholes.

Scotogenic model

[Vicente & Yaguna, 1412.2545; Lindner, Platscher, Queiroz, 1610.06587]

- Flavor structure fixed by neutrino mass/mixing; scale Λ fixed to get dark matter abundance.
- Predicts testable rates in Mu3e; maybe $\mu \rightarrow e$ conversion.

Pati-Salam leptoquark

[[]Heeck & Teresi, 1808.07492]

- Flavor structure fixed by neutrino mass/mixing; scale Λ fixed to explain B-meson anomaly R(K).
- Predicts testable rates in Mu2e!
- Radiative m, plus B-meson: $BR(\mu \rightarrow e; Au) > 3 \times 10^{-13}!$

[Bigaran, Gargalionis, Volkas, 1906.01870]

Can theory predict $\mu \rightarrow e$ rates?

- Yes, but requires link to BSM anomaly to fix Λ :
 - Dark matter, B-meson, g-2, ...
 - ... and some known flavor structure.
- Very rare!

Can theory predict $\mu \rightarrow e$ rates?

- Yes, but requires link to BSM anomaly to fix Λ :
 - Dark matter, B-meson, g-2, ...
 - ... and some known flavor structure.
- Very rare!

Can theory predict $\mu \rightarrow e$ *ratios*?

$\mu \rightarrow e$ conversion

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_\mathsf{DL} + \mathsf{S}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{V},\mathsf{R}}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$

• Overlap integrals from nuclear structure:

Nucleus	D	$S^{(p)}$	$V^{(p)}$	$S^{(n)}$	$V^{(n)}$
⁴ ₂ He	0.000625	0.000262	0.000263	0.000262	0.000263
⁷ ₃ Li	0.00138	0.000581	0.000585	0.000775	0.000780
⁹ ₄ Be	0.00268	0.00113	0.00114	0.00141	0.00142
¹¹ ₅ B	0.00472	0.00200	0.00202	0.00240	0.00242
¹² ₆ C	0.00724	0.00308	0.00312	0.00308	0.00312
¹⁴ 7N	0.0103	0.0044	0.0044	0.0044	0.0044

[Kitano, Koike, Okada, hep-ph/0203110]

• C = coefficients of BSM operators at low energies, e.g.

$$\mathsf{L} = 2\sqrt{2}\mathsf{G}_{\mathsf{F}}\left[\mathsf{C}_{\mathsf{D}\mathsf{L}} \times \mathsf{m}_{\mu}\overline{\mathsf{e}}_{\mathsf{R}}\sigma^{\alpha\beta}\mu_{\mathsf{L}}\mathsf{F}_{\alpha\beta} + \mathsf{C}_{\mathsf{V},\mathsf{R}}^{\mathsf{p}} \times \overline{\mathsf{e}}_{\mathsf{R}}\gamma^{\alpha}\mu_{\mathsf{R}}\overline{\mathsf{p}}\gamma_{\alpha}\mathsf{p} + \dots\right]$$

Julian Heeck

Z dependence

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_\mathsf{DL} + \mathsf{S}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{V},\mathsf{R}}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$

• If one C dominates we can predict ratios!

Z dependence

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_\mathsf{DL} + \mathsf{S}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{V},\mathsf{R}}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$

- If one C dominates we can predict ratios!
- Not really though, this assumes we have the "right" C basis.
- General model:
 - all C present, interference possible!

- BR($\mu \rightarrow e$) could be ~0 for up to 4 nuclei, $\neq 0$ for rest.

Julian Heeck

Aluminium

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_\mathsf{DL} + \mathsf{S}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{V},\mathsf{R}}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$

 Consequence 1: conservative translation of current µ → e limits gives bound

$$\begin{array}{l} \text{LIMIT ON } \mu^{-} \rightarrow e^{-} \text{ CONVERSION} \\ \\ \sigma(\ \mu^{-} \ ^{32}\text{S} \rightarrow e^{-32}\text{S}) \ / \ \sigma(\ \mu^{-} \ ^{32}\text{S} \rightarrow \nu_{\mu} \ ^{32}\text{P}^{*}) & < 7 \times 10^{-11} \\ \\ \sigma(\ \mu^{-} \ \text{Cu} \rightarrow e^{-}\text{Cu}) \ / \ \sigma(\ \mu^{-} \ \text{Cu} \rightarrow \text{capture}) \\ \\ \sigma(\ \mu^{-} \ \text{Ti} \rightarrow e^{-}\text{Ti}) \ / \ \sigma(\ \mu^{-} \ \text{Ti} \rightarrow \text{capture}) & < 4.3 \times 10^{-12} \\ \\ \sigma(\ \mu^{-} \ \text{Pb} \rightarrow e^{-}\text{Pb}) \ / \ \sigma(\ \mu^{-} \ \text{Pb} \rightarrow \text{capture}) & < 4.6 \times 10^{-11} \\ \\ \sigma(\ \mu^{-} \ \text{Au} \rightarrow e^{-}\text{Au}) \ / \ \sigma(\ \mu^{-} \ \text{Au} \rightarrow \text{capture}) & < 7 \times 10^{-13} \end{array}$$

 $\mathsf{BR}(\mu \rightarrow \mathrm{e}; \mathsf{AI}) < 5 \times 10^{-11}.$

- Consequence 2: Al has *four blind directions* in C space!
 - $BR(\mu \rightarrow e; AI)$ could be heavily suppressed.
 - $BR(\mu \rightarrow e; Z)/BR(\mu \rightarrow e; AI)$ could be «1 or »1.

Complementarity of second target

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_{\mathsf{DL}} + \mathsf{S}^{\mathsf{p}}\mathsf{C}^{\mathsf{p}}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^{\mathsf{p}}\mathsf{C}^{\mathsf{p}}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}}_{\mathsf{V},\mathsf{R}}|^{2} + (\mathsf{L} \leftrightarrow \mathsf{R})$

• If you measure $\mu \rightarrow e$ on Al you want a second target that is sensitive to Al's blind directions. [Davidson, Kuno, Yamanaka, 1810.01884]

Complementarity of second target

 $\mathsf{BR}(\mu \to \mathsf{e}) \propto |\mathsf{DC}_\mathsf{DL} + \mathsf{S}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{p}\mathsf{C}^\mathsf{p}_{\mathsf{V},\mathsf{R}} + \mathsf{S}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{S},\mathsf{L}} + \mathsf{V}^\mathsf{n}\mathsf{C}^\mathsf{n}_{\mathsf{V},\mathsf{R}}|^2 + (\mathsf{L} \leftrightarrow \mathsf{R})$

• If you measure $\mu \rightarrow e$ on Al you want a second target that is sensitive to Al's blind directions. [Davidson, Kuno, Yamanaka, 1810.01884]

Lithium-7 best among Z < 30 targets!

	τ_{μ}/ns	spin	NA	DIO
⁷ ₃ Li	2187	3/2	92%	_
$^9_4\mathrm{Be}$	2168	3/2	100%	_
${}^{51}_{23}{ m V}$	280	7/2	99.8%	_
$^{55}_{25}\mathrm{Mn}$	230	5/2	100%	_
${}^{48}_{22}{ m Ti}$	329	0	74%	yes
$^{27}_{13}{ m Al}$	865	5/2	100%	yes

Isotopes

 $\mathsf{BR}(\mu \to \mathsf{e};\mathsf{Z}) = \sum_{\mathsf{N}} \mathsf{BR}(\mu \to \mathsf{e};(\mathsf{Z},\mathsf{N})) \times \mathsf{abundance}(\mathsf{N})$

• Isotopes have fewer flat directions.

Mu2e-II 12/9/20

Julian Heeck

Mu2e(-II) targets

 $\mathsf{BR}(\mu \to \mathsf{e};\mathsf{Z}) = \sum_{\mathsf{N}} \mathsf{BR}(\mu \to \mathsf{e};(\mathsf{Z},\mathsf{N})) \times \mathsf{abun}(\mathsf{N}) + \operatorname{spin-dep.} \mathsf{BR}$

- Titanium would make great *first* target!
 - Many isotopes & spins reduce flat directions.
 - Non-observation gives many limits at once.
 - Observation: change to enriched Ti targets to reduce systematic uncertainties, eventually use other elements to probe specific directions in C space (Al, Li, V, Au...).
- As second target after Al consider enriched Ti-50, then switch to other Ti isotopes.
- Ultimately, measure $\mu \to e$ on as many targets as possible to distinguish operators & spin-dependence.!

Summary

- Difficult to predict testable LFV rates but not impossible. Leptoquarks (e.g. for B anomalies) great for Mu2e.
- Prediction difficult even if we observe e.g. $\mu \rightarrow e$ on Al.
- Have to measure LFV in as many channels as possible to pin down underlying model.
- Lithium good complementary second target after Al.
- Titanium good *first* target, enriched Ti good 2nd, 3rd, ...
- We are in the process of calculating DIO for relevant elements and study isotope dependence, stay tuned!

Backup

Single-operator Z dependence

• Zoom into Z < 30 region:

Single-operator Z dependence

• With isotopes:

