#### Squidadel and Upgrades for Run 1D and 2A/B ADMX Collaboration Meeting



#### Jim Buckley Washington University in St. Louis

for Cold Electronics group:

- Washington U: Dana Braun, Jim Buckley, Chandra Gaikwad, Erik Henriksen, Jonah Hoffman, Kater Murch, Izabella Pastrana
- Fermilab: Matt Hollister, Rakshya Khatiwada, Don Mitchell
- LLNL: Gp Carosi, Nathan Woollett
- **PNNL:** Christian Boutan, Maurio Grando
- U. of Washington: Chelsea Bartram, Gray Rybka

## Summary

- Lots of effort over last 1.5 years setting up lab for ADMX cold electronics testing.
- Squidadel 2A mechanical design and fabrication of components complete.
- Two Run 2A 1.9 GHz JPAs packaged and tested (one at UCB, one at WU)
- Run 1D JPA tested at Berkeley (tests underway at WU) other parts can be packaged to make spare.
- WU Power combiner complete, tested.
- All parts for Run 2A Squidadel are complete.
- Still waiting for circulators in smaller package from Quinnstar, will go with existing units (modified Squidadel hardware)
- New, optimized circulator design for Run 1D covering 1.02-1.41 GHz ready to order.
- Squidadel assembly is beginning, and test fixture is being fabricated.
- Looking into future improvements: cryo filters for DC wiring, Radial switch box, upgrading test system with magnet.
- WU GS Jonah Hoffman will describe component test results.

#### Simplified Schematic



#### Run 2A Schematic



#### Run 2A Layout



• Layout for baseline plan (Plan A)



• Plan A - Directional couplers form bypass at front end, before power combiners



• Plan B - Circulators instead of directional couplers at front end, before power combiner





• Shown with handle and cable management. Not shown - insulating studs to eliminate touches.

## UCB JPAs



• Photos of 1.4 GHz or 1.9 GHz JPA

## Run 1D 1.4 GHz JPA



#### Power Combiner

#### **Achievements - Wilkinson Power Combiners**

- Designed and fabricated Wilkinson power combiners at WU, using in-house RF PCB fab.
- Achieved target insertion loss.
  - All ports terminated: ideal transmission is -6 dB, additional insertion loss < 0.4 dB</li>
  - Good agreement with simulations.





October 3, 2019

- Return loss (cyan)
  - Resonance from packaging (room temperature measurement)
  - Improving return loss by optimizing impedance matching
- Isolation (red)
  - Test isolation performance by combining cavity signals







#### Power Combiner



• Run 1C squidadel design was modified to accomodate new components, power combiner was made more compact to fit in Squidadel.

## Impact on Squidadel



• 1.142" instead of 0.75 inches thick

#### Package As Ordered



• This is what we thought we would get!

#### **Squidadel modification**





• Parts machined in WU shop to allow mounting larger circulators.

#### ADMX Run 2A Electronics Call

# Run-2A Squidadel Parts



#### Run 2A Squidadel Parts



• Mechanical parts for Run-2A squidadel have been fabricated, and gold plated. Ready for assembly.

## Squidadel 2A Test Setup





- Based on design used at LLNL for Run 1C squidadel testing (Left), WU designed and fabricating mounting bracket for squidadel testing in Wash U. BF-LD250 fridge.
- Both WU and LLNL LD250 had a custom, extended tail section to allow Squidadel testing.

# ADMX/X-ray Dil Fridge Lab







- WU BF-LD250 fridge (shared by Buckley and Krawczynski) includes LLNL style extended tail section for testing Squidadel.
- First light (or first He-3) March 1, 2019



Kater has 3 BF LD250s, Erik has 1 BF LD400 with 14T magnet.

•

## JPA Component testing...



• WU GS Jonah Hoffman putting together Run 1D JPA test setup (with proper social distancing)

#### Lab Setup



Q-devil QBox 24 channel fully shielded Fischer to BNC breakout box

Keithley 2450 source meter with 1k series resistor and filter

Keysight E5063A-285 $8.5~\mathrm{GHz}$  VNA

Rhode and Schwartz FSV 10MHz-4GHz spectrum analyzer (FNAL govt. excess)

Anritsu M63692B RF signal generator (FNAL govt. excess)

# DACQ System



• Added Alazar board (need receiver components) for extended frequency development

# WU Cryo Test System

- 3 modified 6-way Radiall switches at mixing chamber, ] for efficient JPA/circulator and other component testing down to ~10mK.
- Working on new switch controller. WU Engineer Izabella Pastrana will work with Jonah to design and layout PCB



# Filter Upgrade









- Pi or Pi/RC filters for high power, low power DC/low frequency lines
- Manfactured by QDevil and Aivon, but based on Harvard patent of design by Kuemmeth and Marcus (Copenhagen).

#### Future Improvements

- New hot load/temperature sensor under construction
- With Erik Henriksen, working on development of filters for low-frequency lines.
- With Erik, will wind a small SC magnet for testing components (fridge is magnet ready with feedthroughs, but need to improve 4K cryocooler). Obtained Quote from Bluefors for



| Row | item ID                                                                                                                                                                                                                     | Quantity | Unit Price | Price USD |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|
| 10  | <b>Cryogen-Free Magnet, Integrated with<br/>BF-System</b><br>A00387                                                                                                                                                         | l pcs    | 91 450,00  | 91 450,00 |
|     | Magnet Spec: 1D 12T 76mm Compensated PSW<br>Ready                                                                                                                                                                           | l pcs    |            |           |
|     | <ul> <li>Field: 12 Tesla at 4.2K</li> <li>Cold bore diameter: 76mm</li> <li>Homogeneity: ±0.1% over 1cm DSV</li> <li>Approximate weight: 57 kg</li> <li>Field compensation: &lt;1000 gauss at Z = 14.0" (356 mm)</li> </ul> |          |            |           |

• Working on design of switch controller PCBs (Jonah and Izabella)

## Cryo. Circulator Tests



- Test results on back-up Run 1D ciirculator, showin all S-parameter measurements at ~10mK, determined in a single cool down.
- Test setup is working, low insertion loss and good isolation down from 1.0
  - 1.5 GHz

