Component Testing for ADMX at Washington University

Nov 17, 2020

Jonah Hoffman

Measurement Infrastructure

- Bluefors DR with extended mixing chamber
- HEMT LNF 34 dB, 4 K HFET
- VNA Keysight E5070B ENA
- Spectrum Analyzer R&S FSV
- Signal Generator Anritsu MG369XB
- Current Source Keithley 2450
- Bias & switch equipment
 - Current Source Keithley 2450
 - Radiall 6-way and bypass switches
 - QDevil breakout box
 - In house switch pulse (one-shot circuit)

Circulator Test Setup

- What we're measuring:
 - $\circ \quad \text{ Insertion loss} \\$
 - Isolation
- 3-port configuration to measure all S-parameters
- Over estimating bypass cable and underestimating through cables gives an upper bound on insertion loss

Circulator Test Results

- We looked at a 1 1.5 GHz circulator and an incorrectly packaged 2A circulator
- 1 1.5 GHz circulator
 - Shown on the right
 - >15 dB isolation
 - Enough to account for a 30 dB gain JPA
 - Overestimated insertion loss shows <4 dB at peak around 1.1 GHz and <6 dB out to 1.5 GHz
- 2A circulator
 - Exhibited good qualities (>18 dB isolation and <0.7 dB insertion loss) from from ~ 1.3 1.8 GHz
- Planned cable attenuation measurements for more precision in insertion loss
- Waiting on properly packaged devices

JPA Test Setup

- What we're looking for:
 - Gain
 - SNRI
 - Frequency tunability
 - Noise temperature
- Shielding
 - Mu-metal shield
 - Aluminum Box
- Flux / current bias stability
 - \circ 1 kHz low pass filter
 - $\circ ~~1~k\Omega~series~resister$

JPA Biasing

- '1.4 GHz' JPA is tunable up to ~ 1.3 GHz
 - As seen in the plot on the right, resonance is higher when under pumping for bias curves
- 1.9 GHz is tunable up to 1.9 GHz

JPA Gain and Noise Measurements

$$SNRI = \frac{G_{JPA}}{P_{on}/P_{off}}$$

- 1.9 GHz JPA
 - > 25 dB gain at 1.9 GHz with
 17 dB SNRI
 - > 15 dB gain down to 1.35 GHz with 12 dB SNRI
- 1.4 GHz JPA
 - > 20 dB gain at 1.34 GHz with 15 dB SNRI
 - ~ 10 dB gain at 1 GHz with 8 dB SNRI

Noise Temperature Measurements

- To make a precise measurement of temperature we want to use y-factor method
 - Still is on the order of saturation level for typical JPA, so unsuitable as a noise source
- We need a calibratable, broadband noise source that is thermally isolated from the device under test.
- Need to calibrate Lakeshore temperature sensor.

$P_1 = G_{JPA}(T_1 + T_{JPA})k_bB$

Coming Up

- Temperature sensor calibrations for hot load
- More JPA tests (including noise temperature measurements)
- Characterization of new circulators when they arrive
- Squidadel tests