Pacific Northwest

Locking Cavity 2A

Matthew Taubman ADMX Collaboration Meeting, November 2020 Noah Oblath, Christian Boutan, Daniel Cain, Ben LaRoque

U.S. DEPARTMENT OF BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

Pacific Northwest NATIONAL LABORATORY

- ADMX Cavity 2A Locking Scheme
- Operational Flow Charts
 - Locking / Tuning a single cavity
 - Locking to Target
 - Locking to Average
- Requirements
 - Precision
 - Speed
 - Heating

- Performance
 - Precision
 - Speed
 - Heating (Steps)
- Pathway forward
 - Move to Cool Prototype Array
 - Move to Final Cavity Array
 - Support

% m ⊂ ba D? ;nihW dvs ny: NgE w R:g D

Pacific Northwest

NATIONAL LABORATORY

ADMX 2A Locking Scheme

- TM010 Cavity Resonance
- Moved by adjusting Fine Turning Rod
- Detuning detected by VNA
- Locking algorithm drives
 PZT Motor Controllers
- => Detuning driven to (near) zero

Pacific Northwest

NATIONAL LABORATORY

Unclassified and Not Sensitive, 2020-11-16

Flow Charts – Locking to Average

Requirements Northwest NATIONAL LABORATORY

Precision

Pacific

- All four cavities should be locked within 10% of their line width (FWHM)
- Speed / Time
 - All four cavities should be locked within 10 seconds for each frequency step
- Power Dissipation / Heating
 - The locking process should produce less than 10 mW on average during the process

Pacific Northwest

Performance

- Testing
 - PNNL working directly with Fermilab to lock Prototype Cavity Array
 - All tests to date have been warm
- Locking Scripts
 - Debugged and Automated
 - Dripline and Virtual Environments Operational
- Cavities
 - Most tests with Cavities A, B, D.
 - C recently came online need to adjust flexure
 - Nominal line width is 900 kHz (warm)
 - Nominal Q ~ 6000 (warm)

Unclassified and Not Sensitive, 2020-11-16

Run 2A Cavity System

/]ть H%m 🛛 + l} Z e e ba D? k;nihW r#P= G dvs ny: c [F P; 2Ngew R:g D

Pacific Northwest

Precision ±1% to ±1.5%

- Routinely achieving ±1% to ±1.5%
- Clumping due to VNA digitization/ resolution

1 % m ba D? k;nihW a dvs ny: c [NgE w R:g D

Pacific Northwest

Speed Median < 1.5 sec

- Nearly always under 2.5 sec / Cavity
- Median is below 1.5 sec / Cavity
- (Cavity C is currently slower)

H % m

c [

Unclassified and Not Sensitive, 2020-11-16

Pathway Forward

- Move to Cool the Prototype Array
 - Certain things will change, including Q and PZT Motor transfer functions
 - ✓ Hopefully in a concomitant way...
 - \checkmark ... Higher Q, and smaller frequency shift per step
 - Locking System Adjustments
 - ✓ Should be relatively minor
 - ✓ System should remain automated for testing
- Move to Final Cavity Array
 - Full Characterization Warm
 - Characterization Cold
 - Locking Testing Cold
 - Commissioning
- Support

Pacific

Northwest

Pacific Northwest NATIONAL LABORATOR

Summary

- Implemented Four Cavity Locking on Prototype Array at Fermilab
- Meeting Speed and Precision Requirements
- Heating not yet ascertained but expected to easily meeting requirements
- Need to discuss next moves
 - Limited funding
 - Delays
 - Do we test prototype cavities cold?
 - Or wait for final cavity array?

Pacific

Pacific Northwest

Thank you

