ADMX-Orpheus: A Dielectrically-Loaded Fabry-Perot Resonator to Search for Higher Mass Axions ADMX Collaboration Meeting 2020

University of Washington

11/17/2020

ADMX haloscope difficult to implement higher frequency

ADMX haloscope difficult to implement higher frequency

Current Solution: Dielectric Haloscopes

Higher frequency with more volume and better axion coupling.

$$P_{a} \propto B_{ext}^{2} Q V_{eff}, \qquad V_{eff} \propto \left| \int dV ec{f B}_{ext} \cdot ec{f E}_{a}
ight|$$

Low-loss dielectric $\sim \lambda/2$ thick placed every other half-wavelength.

 V_{eff} is large.

ADMX Orpheus Concept

Goal: Dielectrically-Loaded Fabry-Perot Open Resonator in dipole magnet. Tunes with length. Search for axions at 15-18 GHz.

Additional Benefits:

- Less ohmic losses \rightarrow higher Q.
- Sparser spectrum \rightarrow easier to maintain axion-coupling mode.

Orpheus Science Reach

Proof-of-concept experiment. Preliminary results hopefully by Summer 2021.

 $B=1.5\,{\rm T},~T_{sys}\sim 12\,{\rm K},~V_{eff}\sim 65\,{\rm mL},~Q=10^4,~1$ week runtime.

TEM_{00-18} mode couples to axion

V_{eff} needs to be recalculated.

Mechanics for Cryogenic Orpheus

Lots of moving parts in vacuum, LHe.

Flexures, silver coating prevent galling and binding. Gearbox allows for moving 3 plates independently.

Orpheus Assembled

Empty Resonator

Resonances tune with length.

Resonant frequencies between measured, analytical formula, and simulation agree.

Resonant frequencies between measured, analytical formula, and simulation agree.

Measured TEM_{00-18} Qs $% \left({{{\mathsf{Q}}_{{\mathsf{D}}}}_{{\mathsf{D}}}} \right)$

Q will decrease with better coupling. Q will increase with lower resistivity mirrors and cryogenic temperatures.

Resonator Coupling Coefficient

 $\frac{df}{dt} \propto \left(\frac{\beta}{1+\beta}\right)^2$. Need better coupling to have reasonable scan rate. β can be increased by increasing Q_0 or by building impedance matching network. Work in progress.

Now let's add dielectrics!

99.5% Alumina from Superior Technical Ceramics. 3 mm thick. 6" wide. $\epsilon_r \sim 9.8$ tan $\delta \sim 0.0002?$

Orpheus modes

Modes tune with length.

Orpheus modemap

Orpheus modemap

Simulation and measurement diverge at higher frequencies, likely because of unaccounted ϵ_r frequency dependence.

Orpheus modemap

Simulation and measurement diverge at higher frequencies, likely because of unaccounted ϵ_r frequency dependence. TEM₀₀₋₁₈ mode clear.

Simulated vs Measured Transmission

Orpheus Quality Factor

Q lower because of lossy dielectrics. Will increase at lower temperatures. Dip in center from mode crossing. Suggests practical BW: 15.7 GHz-17.2 GHz.

Orpheus Coupling

Coupling lower likely because of lower Q.

Try cooling the resonator

Mechanics work even while submerged LN2! Smooth tuning. Noisier in metallic canister.

Resonator characterized while in contact with LN2, but not submerged. Resonator ice-cold.

Orpheus Q when Colder

Q increases by $\sim 60\%.$ Will increase more when in contact with liquid helium bath.

Outlook

Build liquid helium setup. In progress. Build magnet.

Improve impedance matching.

Take data at 4 K for 2 weeks.

First results hopefully by the end of summer.

Thank you!

ADMX Collaboration, especially UG Parashar Mohapatra

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

- 1. Orpheus is a dielectric haloscope that will push axion search to \sim 70 $\mu eV.$
- 2. Orpheus mechanics and microwave properties have been tested.
- 3. Experiment being built to search for axions at 4 K.

Backup slides.

Orpheus Experiment 2014 *

Increase V_{eff} by alternating $\vec{\mathbf{B}}$ to match $\vec{\mathbf{E}}$

Difficult to scale to Tesla.

^{*}Rybka et al.:PhysRevD.91.011701

Reaching DFSZ

Assume Quantum Limited Amplifiers. Then $T_{sys} \sim \frac{hf}{2k_B} = 0.43$ K. Let $Q_L = 10^5$, SNR = 3.5, f = 18GHz.

If
$$rac{df}{dt} = 1 \mathrm{GHz}/\mathrm{year}$$
, then $B^2 V_{eff} = 200 \mathrm{LT}^2$ $(V_{eff} = V imes \mathcal{C})$

Orpheus Simulations

For simulations: $\epsilon_r = 9.4$, tan $\delta = 0.0005$, thickness = 1/8".

Factor of 40 improvement over cylindrical cavity haloscope (2-to-1 aspect ratio) operating at same frequency.

Simulated TEM $_{00-18}$

But this isn't the right quantity to think about.

Far future: How to reach DFSZ sensitivity

Scan rate equation from ADMX

$$\frac{df}{dt} \approx 1.68 \text{ GHz/year } \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{1 \text{ GHz}}\right)^2 \left(\frac{\rho_0}{0.45 \text{ GeV/cc}}\right)^2 \cdot \left(\frac{5}{SNR}\right)^2 \left(\frac{B_0}{8 \text{ T}}\right)^4 \left(\frac{V}{100l}\right)^2 \left(\frac{Q_L}{10^5}\right) \left(\frac{C_{010}}{0.5}\right)^2 \left(\frac{0.2 K}{T_{sys}}\right)^2$$

Assume Quantum Limited Amplifiers. Then $T_{sys} \sim \frac{hf}{2k_B} = 0.43$ K. Let $Q_L = 10^5$, SNR = 3.5, $V_{eff} = VC_{lmn}$, f = 18GHz. If

$$rac{df}{dt}=1{
m GHz}/{
m year},$$
 then $B^2V_{eff}=200{
m LT}^2$

Orpheus vs Cylindrical Cavity

How is Orpheus different from MADMAX?

- 1. We are treating this like a resonator problem. Design choices come from resonator intuition.
- 2. We want high Q. They want a broadband measurement.
- 3. We are less ambitious. We are going to search from 70-80 μ eV. They want to cover 40-400 μ eV.

Orpheus Gearbox

