

# 2-4 GHz Slotted Cavity Prototype Simulations

Mark Jones November 18, 2020



PNNL is operated by Battelle for the U.S. Department of Energy





### **Overview of Slotted Cavity Prototype**

- Short 2-4 GHz prototype cavity assembly being fabricated at UF
- Cylindrical cavity formed from two clamshell halves
  - Diameter = 13 cm
  - Length = 19.558 cm
  - Tuning rod diameter = 3.5 cm
- Tuning concept uses slotted ends similar to 2A design with sapphire pins
- 0.007" gap at ends of tuning rod
- EM simulations needed to evaluate field leakage and comparison with measurements



SolidWorks model of 2-4 GHz slotted cavity prototype



### **HFSS Simulations of Slotted Cavity Prototype**

- Imported from Solidworks model
  - Defeatured to remove unneeded geometry such as fastener holes
  - Tuning rod located in center of cavity
- Cavity inside larger air-filled cylindrical volume with 377 Ohms/sq impedance boundary assigned to outer surfaces
  - Allows prediction of radiation leakage from cavity into larger air volume
- Used eigenmode solver with curvilinear mesh elements and mesh operation to enforce 32 segments around circumference of curved objects
- Parameterized rotation of tuning rod using theta angle





32-segment mesh









## V1 Cavity: Tuning Rod At Center

• Investigated conductivity cases for center-positioned tuning rod

| Index | Simulation Model Description                                           | Conductivity<br>(S/m) | Frequency<br>(GHz) |
|-------|------------------------------------------------------------------------|-----------------------|--------------------|
| 1     | Sealed simple cavity, copper                                           | 5.8E7                 | 3.096              |
| 2     | Slotted clamshell, copper                                              | 5.8E7                 | 3.097              |
| 3     | Slotted clamshell, copper, simple external arm                         | 5.8E7                 | 3.097              |
| 4     | Slotted clamshell, ASE copper, simple external arm                     | 2.15E9                | 3.097              |
| 5     | Slotted clamshell, superconducting cavity and rod, simple external arm | Inf                   | 3.097              |
| 6     | Slotted clamshell, superconducting cavity, simple external arm         | Inf                   | 3.097              |
| 7     | Slotted clamshell, superconducting rod, simple external arm            | Inf                   | 3.097              |

| Unloaded<br>Q-factor | Form<br>Factor |
|----------------------|----------------|
| 16,475               | 0.78           |
| 15,484               | 0.78           |
| 15,363               | 0.78           |
| 76,176               | 0.78           |
| 328,575              | 0.78           |
| 125,014              | 0.78           |
| 113,730              | 0.78           |



# V1 Cavity: Sapphire vs Copper Tuning Rod Pins

- Compared sapphire and ASE copper tuning rod pins
  - Conductive pins reduced Qu by 40% and produced more field leakage outside cavity
- Sapphire pins worked significantly better than conductive pins in previous experiments

| Simulation Model Description                                                                                      | Frequency (GHz) | Unloaded Q-<br>factor | Form<br>Factor |
|-------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|----------------|
| Slotted clamshell, ASE copper cavity and tuning rod, simple external arm, 32-segment mesh, <i>sapphire pins</i>   | 3.097           | 74,472                | 0.78           |
| Slotted clamshell, ASE copper cavity and tuning rod, simple external arm, 32-segment mesh, <i>ASE copper pins</i> | 3.096           | 45,512                | 0.78           |







- V1 compares well with ideal sealed cavity for much of tuning range
- Significantly lower Q-factor when tuning rod is at wall (theta =  $33^{\circ}$ )

| Theta angle<br>(deg) | Frequency<br>(GHz) | Unloaded<br>Q-factor | Theta angle<br>(deg) | Frequency<br>(GHz) | Unloaded<br>Q-factor |
|----------------------|--------------------|----------------------|----------------------|--------------------|----------------------|
| 0                    | 3.097              | 15,579               | 0                    | 3.097              | 16,500               |
| 5                    | 2.889              | 15,691               | 5                    | 2.889              | 16,938               |
| 10                   | 2.648              | 18,224               | 10                   | 2.648              | 18,548               |
| 15                   | 2.449              | 19,299               | 15                   | 2.449              | 19,962               |
| 20                   | 2.288              | 20,964               | 20                   | 2.288              | 21,495               |
| 25                   | 2.156              | 21,170               | 25                   | 2.156              | 22,779               |
| 30                   | 2.049              | 22,260               | 30                   | 2.049              | 24,185               |
| 31                   | 2.030              | 19,884               | 31                   | 2.030              | 24,483               |
| 32                   | 2.012              | 17,534               | 32                   | 2.012              | 24,786               |
| 33                   | 1.996              | 9,036                | 33                   | 1.996              | 17,576               |

V1 cavity model

Ideal sealed cavity





### V1 Cavity: Field Leakage with Tuning Rod at Wall



Top view showing location of XZ plane aligned with slot opening



Electric field in XZ plane shown on left





.

### V1 Cavity: Thicker Slot with Tuning **Rod at Wall**

- Thicker slot wall reduces E-field leakage
- Increases Q-factor, but still lower than desired







### **V2 Cavity Design**

- Tuning armature changed to flexture clamp for sapphire pins
  - Sapphire pins are larger
  - Center of rotation is different
- Slots in v1 and v2 are notionally the same
  - Tuning arm channel is extended to other clamshell to provide space for slot cover but there is no slot in that half
  - Slot symmetrically located in channel in V1 and offset in V2
- V2 cavity has 3 small antenna ports
- Solidworks model significantly defeatured for EM simulation









- Model shows good performance with somewhat lower Q-factor at 30°
- At this angle, a TE mode (Qu ~1,000) is within 3 MHz

| Theta angle<br>(deg) | Frequency<br>(GHz) | Unloaded<br>Q-factor |
|----------------------|--------------------|----------------------|
| 0                    | 3.097              | 15,440               |
| 5                    | 2.901              | 16,493               |
| 10                   | 2.668              | 18,112               |
| 15                   | 2.474              | 19,333               |
| 20                   | 2.315              | 20,425               |
| 25                   | 2.184              | 21,337               |
| 30                   | 2.077              | 17,018               |
| 32                   | 2.039              | 21,127               |
| 34.5                 | 1.997              | 22,986               |

V2 cavity model without slot covers







### V2 Cavity: Tuning Rod at Wall

- Tuning rod angle  $34.5^{\circ}$ 
  - ~0.42mm between rod and wall
- Slot covers significantly reduce Q-factor (to approximately half)



| Index | Simulation Model Description                 | Tuning Rod<br>Location | Frequency<br>(GHz) | Unloaded<br>Q-factor |
|-------|----------------------------------------------|------------------------|--------------------|----------------------|
| 1     | Copper slotted clamshell, copper slot covers | Cavity wall            | 1.997              | 11,206               |
| 2     | Copper slotted clamshell, no slot covers     | Cavity wall            | 1.997              | 23,183               |





# V2 Cavity: Tuning Rod at Wall

- Cavity with slot covers has higher E-field outside cavity volume
- Electric field plots show capacitive coupling produced by slot covers





V2 cavity with slot covers

V2 cavity without slot covers



- Tuning pins held by cylindrical collets (PEEK or Aluminum)
- Slots are slightly deeper (from 2.54 mm to 3.81 mm)
- Clearance slots for tuning arm are correspondingly shallower









- Model results similar to V2 design, also somewhat lower Q-factor at 30°
- At this angle, a TE mode (Qu ~3,500) is within 3 MHz

| Theta angle<br>(deg) | Frequency<br>(GHz) | Unloaded<br>Q-factor |
|----------------------|--------------------|----------------------|
| 0                    | 3.097              | 15,918               |
| 5                    | 2.901              | 16,594               |
| 10                   | 2.668              | 18,079               |
| 15                   | 2.474              | 19,516               |
| 20                   | 2.315              | 20,748               |
| 25                   | 2.184              | 21,841               |
| 30                   | 2.077              | 15,052               |
| 32                   | 2.039              | 20,852               |
| 34.5                 | 1.997              | 23,577               |

V3 cavity model w/ PEEK collets







- Summary
- Simulated 3 iterations of new 2-4 GHz slotted clamshell cavity design
- V1 design
  - Used to compare range of surface conductivities
  - Used to examine field leakage due to conductive tuning rod pins
  - Results compared well with ideal sealed cavity except when rod is at wall (near 2 GHz)
  - Thicker slot walls reduced field leakage and improved Q-factor
- V2 design
  - Results compared well with ideal cavity but with smaller Q-factor near 2.1 GHz
  - Qu ~17k possibly due to TE mode mixing
  - Slot covers produced field leakage and reduced Q-factor when rod is at wall
- V3 design
  - Results very similar to V2 design with same lower Q-factor near 2.1 GHz
  - Dielectric and conductive tuning pin collets gave similar results
- Next steps
  - Validate HFSS simulation results with COMSOL
  - Create mode map to fully examine performance
  - Model 3-4 GHz tuning range with different tuning rod diameter

15