

ADMX 2-4GHz Electronic Tuning Update

Jonathan Tedeschi Electrical Engineer

PNNL is operated by Battelle for the U.S. Department of Energy

- Background and motivation
- Summary of research to date
- Simulation and measurement details
- Next steps

Background and Motivation

- As the cavity resonant frequency changes due to tuning rod location, the coupling antenna needs to be tuned to couple into the right frequency
- Current methods use mechanical tuning of coupling antenna
	- Critically coupling of probe into microwave cavity resonant frequency
	- Providing good energy transfer
- Electronic tuning could provide advantages to the current matching technique
	- Removing potential mechanical failure point
	- **Heat load**
	- **Physical size**
	- Scalable design for many cavity systems
- Industry applications
	- Reconfigurable antennas
	- Tunable filter / switched filter banks

Impedance Control for Critically Coupled Cavities

Bill Riddle and Craig Nelson National Institute of Standards and Technology 325 Broadway Boulder, CO 80305-3328 Email: Bill.Riddle@nist.gov

Example of Electronic Tuning Impedance Match

Background: Electronic Tuning Model

- Adopted high level design from LLNL previous work and NRAO
- Cavity simple representation by using ideal LC resonant circuit
- Coupling efficiency set by transformer ratios into cavity
- Phase shifter used to adjust reactance for best coupling from measurement port into cavity
- 3-port network used to connect electronic tuning element with cavity and measurement port

Research Summary to Date

- Cavity simulations cascaded with impedance transformers
- Circulator vs. unmatched tee

-
- Tuning stub vs. digital phase shifter

• Tuning JPA inductance via magnetic flux bias

- Tunable cavity, adjustable Q, full system sparameters
- Unmatched tee providing best result with no isolation between ports
- Ideal tuning stub (microstrip line) produces good impedance matching, but requires many lengths to match over a broad bandwidth
	- **Digital phase shifter proved too lossy**
- New concept proposed by Aaron Cho, research underway

- Cavity simulation created from simple LCR resonant circuit
	- **Tunable vs. frequency**
	- LC values computed based upon desired Q, resonant frequency and resistance
- Cavity impedance then translated to ABCD matrix
- ABCD matrix then translated to scattering parameter matrix (s-parameters)
- S-parameters used in microwave cascaded analysis simulations

 2.8

3.25 3.50 3.75 4.00

 3.0

 $1eQ$

- Simplistic LCR cavity model produces desired results
	- **Cavity unloaded Q values**
	- **Resonance frequency**
	- Complex impedance

Isolated 2.5GHz Cavity LCR Performance

Multiple Cavity Simulations Tuned for Different Frequencies

Cavity Simulated Capacitance vs. Frequency Unloaded O: 40000 2.0 1.8 1.6 生 14 1.2 1.0 2.0 2.5 3.0 3.5 4.0 GHZ

- Cascading s-parameter matrices preserving magnitude and phase relationships vs. frequency
- Allows for transmission and reflection measurements through the cavity system
- Optimization of a tuning circuit for matching Port 2 to the impedance of the cavity
- Initial building blocks established but parameter refinement necessary post proof of concept

Unmatched System Simulation

10

 -10

 -20

 -30

 -40

 -50

- System simulations shown for a 2.5GHz cavity with a 1:2 transformer for the coupling antenna
- S11 goes from -40dB to -4.4dB
	- Appropriate for N^2 impedance change
- S21 incurs loss of 1.9dB due to mismatch
- Transformer coupling used as placeholder to evaluate tuning techniques

Electronic Tuning via Digital Phase Shifter

- Measured s-parameters from 2-4GHz vs. control state
- Digital phase shifter s-parameters applied to impedance tuning circuit and system cascade
- Phase shifter showed minimal ability to impact impedance match 1:2

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

GHz

 20

I State
a

Control
a
e

50

6

Digital Phase Shifter Performance vs. Control State (calibration line magnitude and phase removed) Digital Phase Shifter **Digital Phase Shifter** S21 over Bandwidth Phase Tuning over Bandwidth -3.00

 -3.25

 -3.50

 -4.00

 -4.25

 -4.50

 -4.75

Sta -3.75

GHz

Electronic Tuning with Digital Phase Shifter

 -20

20

30

Phase Shifter State

40

50

- Digital phase shifter state 30 (best case scenario)
	- S11 (cavity perspective): -9dB
	- **S22 (JPA side): -18.5dB**
	- S21: -2.2dB
- Summary plots shown for s-parameter performance at 2.5GHz vs. control state
- De-embedding DPS state 0 (for example only)
	- **Loss removed but phase adjustment preserved**
	- Phase shifter loss requirements ~0.5dB max

11

60

50

30

Phase Shifter State

20

Tuned Location

dig attn state 30

Electronic Tuning with Shorted Transmission Lines

- Tuning is sensitive to preceding transmission line length
- Best case shown with tuning stub
	- S11 (cavity perspective): -23dB
	- S22 (JPA side): -24dB
	- S21: -0.6dB

Tuning Line Test Loop State

60

 511 $-$ s₂₁ $^{-1}$ -4 -2 -8 -8 -12 -3 -12 -16 $-\ell$ -16 $g - 20$ leg −20 第 −5 -24 -24 -6 -28 -7 -28 -32 -32 -8 -36 -9 -36 $-$ 522 -40 -10 -40 2.5 3.0 3.5 2.5 3.0 2.0 2.5 3.0 3.5 4.0 20 4.0 20 3.5 GHz GHz GHz

Tuned Location

12

- If the ideal tuning stub provides a good impedance match, but the loss associated with a switched – tuning stub network would render it ineffective, a JPA may be able to work as a tunable inductor
- JPA is a resonant amplifier circuit with a coupling capacitance, a capacitance to ground and a tunable inductance
- The magnetic flux bias provided to the SQUID array within the JPA may be used to tune the circuit's inductance
	- This inductance occurs on the non-linear transmission line where the center conductor is an array of squids, and the inductance per unit length is comes mostly from the nonlinear Josephson inductance of the SQUIDS
- Literature shows tuning bandwidth of JPA at ~ 1 octave
	- **EXECUTE:** Lends to determining inductance range

Pump Tone

Signal

Development and Characterization of a Flux-Pumped Lumped Element Josephson Parametric Amplifier Esposito M., Rahamim J.

- Simulations have been developed to:
	- **Create LCR cavity s-parameter matrix**
		- **Tunable vs. frequency, selectable Q**
	- **Impedance transformers for synthesizing** impedance mismatch
- Simulations comparing impedance matching results
	- **Example 2** Circulators vs. unmatched tee
	- **Digital phase shifter vs. tuning stub**
- Current work
	- **Studying JPA tunable inductance**
	- **Market research on servo-controlled phase** shifters for cryogenic applications

Low Loss Motor Driven Phase Shifter

Thank you

Backup Slides

●

PNNL is operated by Battelle for the U.S. Department of Energy

3-Port Network: Circulator vs. Unmatched Tee

- Initial testing of two variations of the three-port network
- Circulator directional device, S21 != S12, provides isolation between paths **Low loss in standard operating direction (~0.6dB)**
	-
- Unmatched tee no impedance matching or isolation.
	- **Most sensitive to 3 port impedance matching network**

Pacific 3-Port Network: Circulator vs. Unmatched Tee Simulation Results Northwest

- 3-port network using either a circulator or an unmatched tee
- Shorted microstrip line used as a tuning stub, length varied producing multiple S11 curves
- Isolation from circulator reduces effectiveness of tuning stub
- Unmatched tee connection behaves well and allows for impedance matching

Electronic Tuning with Digital Phase Shifter

- Attenuator placed before de-embedded phase shifter to determine how much loss renders the phase shifter ineffective
	- **Example 2 Leads to phase shifter requirements**
- Phase shifter IL needs ~0.5dB IL or less to be effective
	- **Possible with large mechanical tuned phase shifters or servo-controlled** phase shifters and the phase shifter of serve controlled and the Digital Phase phase shifter shifter

Tuning via JPA Magnetic Flux Bias

- **Strategy**
	- **Determine typical LC parameters** values for JPA
		- Values from literature search
	- **Determine tunable range for Lg term**
	- Apply simplified JPA C-L||C model to cavity simulation to determine tuning effectiveness
- Literature shows tuning bandwidth of JPA at \sim 1 octave
	- **EXEC** Lends to determining inductance range

