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Disclaimers

| do not consider myself a heavy-ion physicist

e My background is more on (jets from) the “vacuum” side of
high-energy collisions

@ The pure “heavy-ion” part of this talk is most likely biased towards
my own work with Paul Caucal and Edmond lancu
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Not enough time to get a crisp picture

(due to other commitments) | started to think seriously about this specific talk

only yesterday
Again, probably a source of bias towards my personal views
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Disclaimers

| do not consider myself a heavy-ion physicist

e My background is more on (jets from) the “vacuum” side of
high-energy collisions

@ The pure “heavy-ion” part of this talk is most likely biased towards
my own work with Paul Caucal and Edmond lancu

Not enough time to get a crisp picture
(due to other commitments) | started to think seriously about this specific talk

only yesterday
Again, probably a source of bias towards my personal views

Main idea
try to build a picture from history/lessons in pp collisions
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From RHIC to the LHC (stating the obvious)

jet Raa (expanding medium, EPPS16NLO)

@ Higher energy
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@ Higher luminosity
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Main consequence: more
observables measurable
and with higher precision
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The net benefit

A picture of jet quenching starts to emerge:

@ Jet energy loss: many observations, several theoretical approaches

(PQCD /hybrid/...)

@ Several complex effects can be discussed

e enhancement of large-angle emissions
o decoherence effects
e back-reaction

e medium response

Many qualitatively understood from first principles

@ Several Monte-Carlo implementations In particular the large-scale
JETSCAPE effort
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What | would like to see

The goal to keep in mind
Aim towards a quest for precision

® Make Heavy-lon studies quantitative (instead of qualitative)

@ Think about long(er)-term impact

Gregory Soyez Perspectives for jets in heavy-ions Snowmass 2021 — HI 5/15



Challenges

o Effort from both theorists and experimentalists

[exp] Work on unfolded measurements with controlled systematics
(e.g. background subtraction)

[exp] Data useful in the long term (when theory will improve)

[th] Provide a first-principles theory of jet quenching (not a “model”)

[th+exp] Think of designed observables to target specific quenching
effects
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Lessons from pp: looking back 30 years ago

[1990 Snowmass accord on “Toward a standardization of jet definitions”|

Several important properties that should be met by a jet definition are

(3]:
1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.

Ultimately, this led (~2008!) to the current LHC setup (e.g. anti-k;). J

This has allowed for the LHC to be a precision machine
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A few selected examples/topics/thoughts
(mostly on the theory side)
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Background subtraction and long-term data usefulness

The background (Underlying Event) is coupled to the “hard” event J

(unlike “pileup” which can be viewed as independent)

@ “background subtraction” can be viewed as part of the
analysis/observable’s definition

@ Long-term goal for a faithful (apple-to-apple) comparison:
a full theory simulation (including hard+underlying event) should be able

to apply the same procedure as the experiments do.

Increasingly important since:
@ Full simulations (Hard-+hydro) start to appear
@ We are discussing correlated effects (typically medium response)
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Background subtraction and long-term data usefulness

The background (Underlying Event) is coupled to the “hard” event J

(unlike “pileup” which can be viewed as independent)

@ “background subtraction” can be viewed as part of the
analysis/observable’s definition

@ Long-term goal for a faithful (apple-to-apple) comparison:
a full theory simulation (including hard4-underlying event) should be able
to apply the same procedure as the experiments do.

Practical remarks:

@ To what extend are we able to discuss fine-grained effects (details of large-angle
radiation patterns, details of medium response, details of hydro) without a
controlled subtraction method across theory and experiment?

o Several methods available as “simple” starting points (area—median,
ConstituentSubtractor, SoftKiller, “grooming”)
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Different physics at different scales
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Different physics at different scales
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Different physics at different scales
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Different physics at different scales

Vacuum Medium Physics
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Different physics at different scales

Vacuum Medium Physics
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Theory progress

Complex but a good fraction is accessible from first-principles QCD J

Lots of progress over the past few years
@ Improved picture of jet quenching (for jets rather than hadrons)
@ More precise calculations of medium-induced emissions (longitudinal
and transverse spectra)
@ Accumulate evidence for more fine-tuned effects
What to look forwards to?

@ Still a lot to do “analytically”
o going beyond simplifying assumptions — higher accuracy/precision
e more realistic medium description (expansion, geometry, ...)

@ Implementation in dedicated Hl Monte Carlo generators
@ Benefit from work in generators in pp collisions
@ Put uncertainty bands [question: what target accuracy for the future?|
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Substructure opens (almost) endless options

Brief history

1980 Birth

2008 Re-birth (BDRS)
2008-13 Main techniques

2013 First analytics

2013- New techniques

2018 Deep-learning

2018 Heavy-ions

Offers a differential view of
a jet's radiation pattern

o’
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Substructure opens (almost) endless options

Brief history What existing techniques are good for

1980 Birth Select specific “vacuum” configurations as

2008 Re-birth (BDRS) initial conditions for jet quenching
2008-13 Main techniques Caveat: substructure tools affect

2013 First analytics quenching effects in non-trivial ways

2013- New techniques

2018 Deep-learning Where existing techniques are limited

2018  Heavy-ions Jet quenching effects are different from pp

parton shower: angular-ordering violations,

different phase-space, ...

Offers a differential view of
a jet's radiation pattern

Caveat: delicate to find observables which
J isolate a given quenching effect
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Possible first steps

@ Get a set of (unfolded) measurements and theory calculations
o Explore sensitivity to different scales/ordering (e.g. different
angularities, shapes)
o Explore different phase-space regions (e.g. different grooming;
SoftDrop v. DynGrm v. DynGrm+SD, ...)
o if possible: large p;, dijets and v/Z+jet (# q/g)
Example 1: subjet fragmentation function

primary Lund declusterings

1.4

\ — ke>2GeV
\ — ke>5GeV

Perturbatively more robust &
calculable

Pt,jet =500 GeV, R=0.4
(Bmax, ki, min/GeV)=(1,0.25),(0.75,0.25),(1.5,0.25),(1,0.15),(1,0.5)
0.4

‘0.01 0.02 0.05 0.1 0.2 0.5
7= P
P parent.
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Possible first steps

@ Get a set of (unfolded) measurements and theory calculations
o Explore sensitivity to different scales/ordering (e.g. different

angularities, shapes)

o Explore different phase-space regions (e.g. different grooming;

SoftDrop v. DynGrm v. DynGrm+SD, ...)

o if possible: large p;, dijets and v/Z+jet (# q/g)

ke [GeV]

Example 2: Lund jet plane

Ratio for Qs = 1.2 GeV [preliminary]
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Rich pattern sensitive
to medium details

Watch out:
subleading corrections
and non-pert effects
tend to smear
quenching effects
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Possible first steps

@ Get a set of (unfolded) measurements and theory calculations

Raa

@ Study fundamental observables differential in substructure variables
Idea: use substructure to select a jet sample with desired properties

1
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Example 3: energy loss v. 6
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Idea:
smaller 0,
= more collimated
= less vacuum emissions
= less sources for med-ind. em.
= smaller Ejoss
Same basic mechanism for the 0,
distrib
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Longer term objectives

Design observables specifically targetting quenching effects J

Notes:
@ The previous steps are probably necessary to first set up a solid base

@ Beyond a set of powerful tools, 20 years of substructure gained a lot
of insight on how to think about these questions
= keep close ties with the substructure community
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New opportunities opened at the LHC to study jet physics
We are only beginning to explore vast possibilities J

Main perspectives from my point of view:
@ Think about long term impact

® Work on precision and uncertainty bands (as for pp collisions)
Question: what accuracy can/should one target? (5-10%7)

© Incorporate theory developments into MC generators

@ Make use of jet substructure

e Jet characterisation using existing techniques
o Use substructure to tweak the jet sample
o Build dedicated observables
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Backup
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Substructure examples

Nuclear effects for zg Nuclear effects for 8,
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