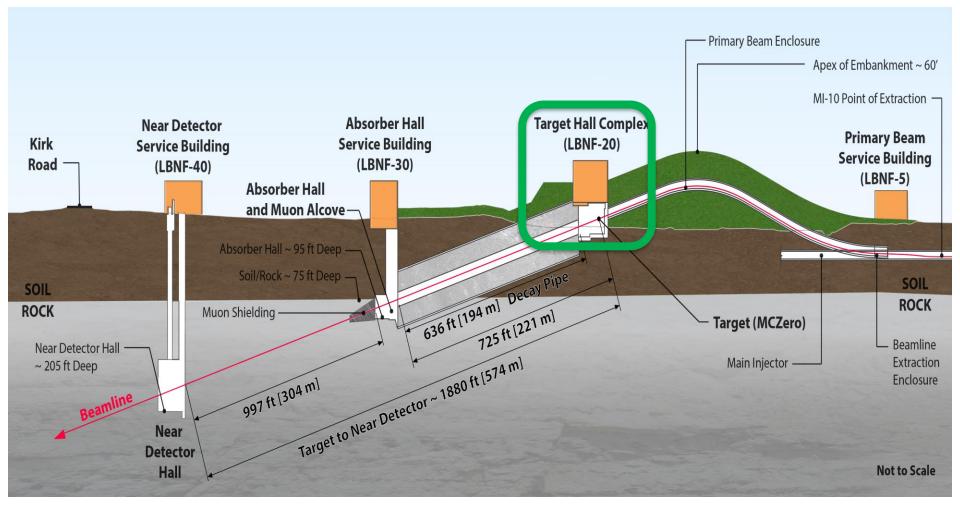
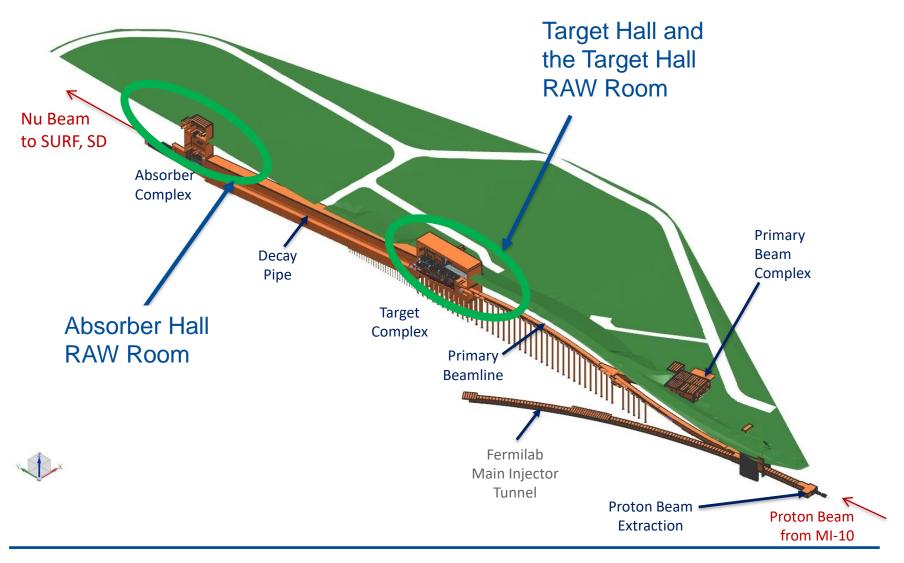
LBNF Target Hall H₂ and ⁴¹Ar Gas Control System Design

Technical Design Review Dune-doc-20934

Abhishek Deshpande December 18, 2020

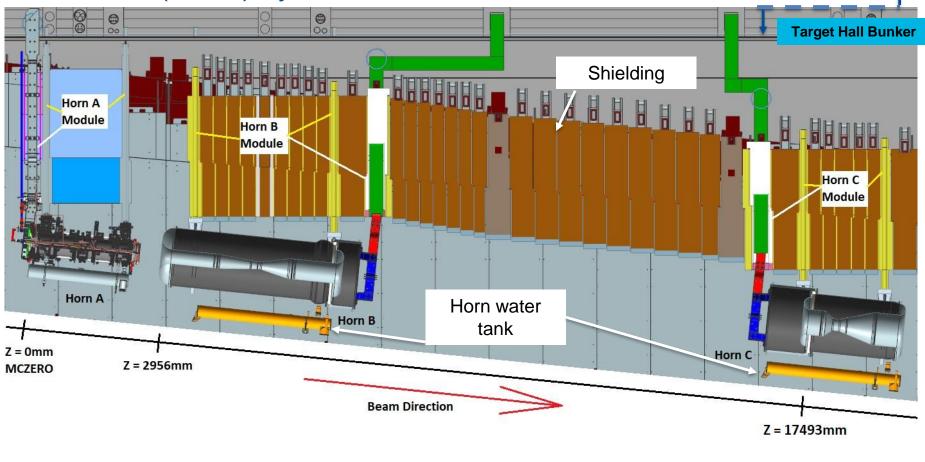


Office of Science


Overview

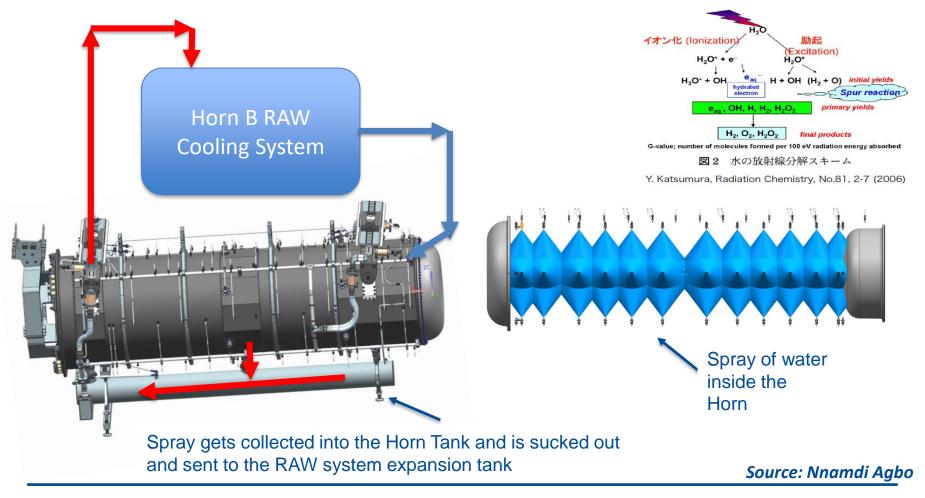
- Introduction
- Motivation
- Hydrogen Flammability
- System design
 - General
 - Requirements at 2.4 MW beam power
 - Modeling
 - Preliminary P&ID
 - Pressure compensation
 - Valves, pumps, and tanks
 - System operation
 - General layout
 - Standards
 - System parameter summary
- Conclusions

Overview

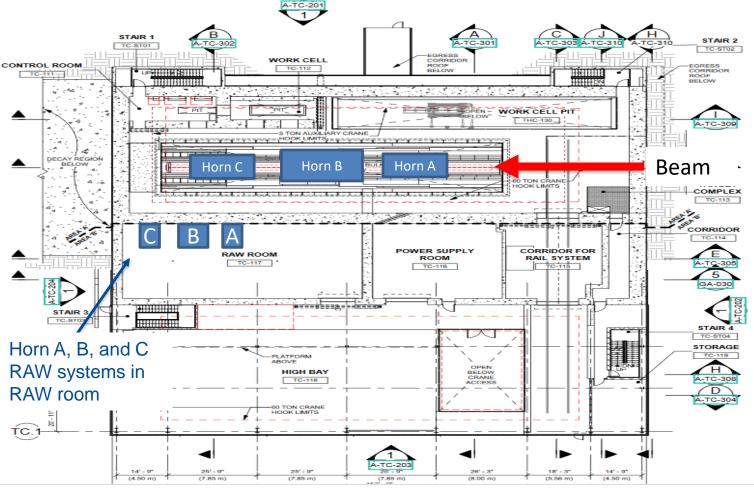


Introduction

Introduction: Target Hall, Target Bunker, and the Horns


- The Target and the 3 Horns are in the Target Hall Bunker.
- The Horns are water cooled by closed loop Radioactive Water (RAW) systems—located in RAW room.

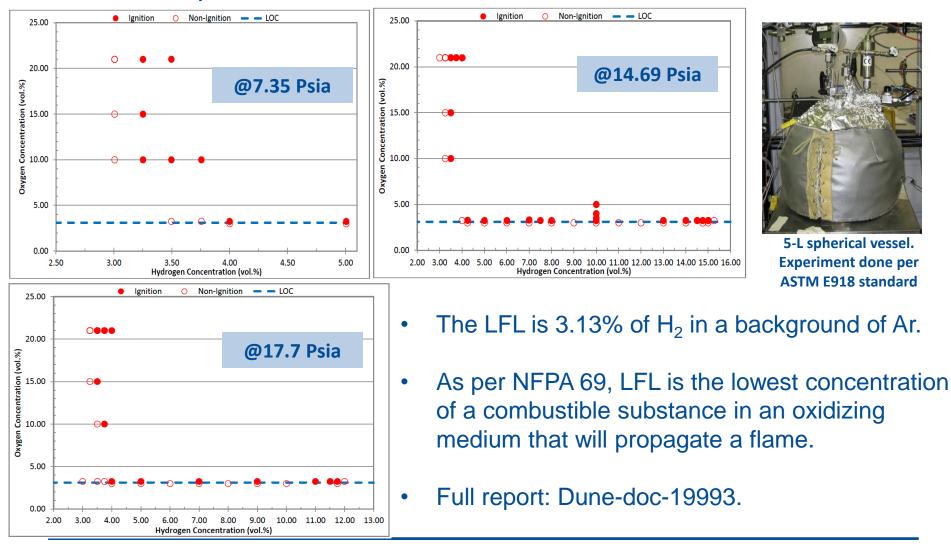
Source: Cory Crowley


Introduction: Inside the Horn

- The water interacts with the ionizing radiation and dissociates to hydrogen and oxygen.
- The blue and red arrows indicate RAW water flow path.

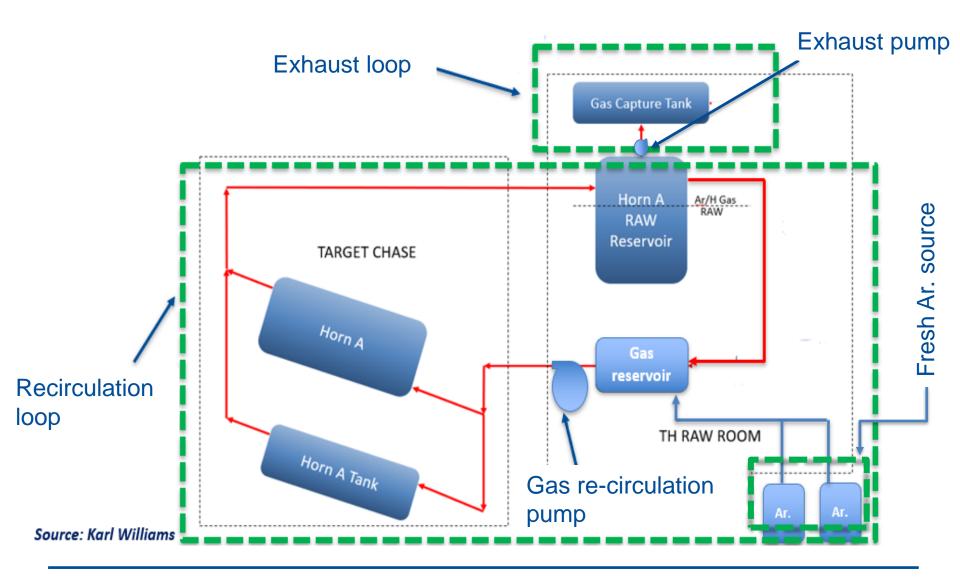
Introduction: The RAW Room

 The Horns and their RAW systems in the RAW room are shown below:

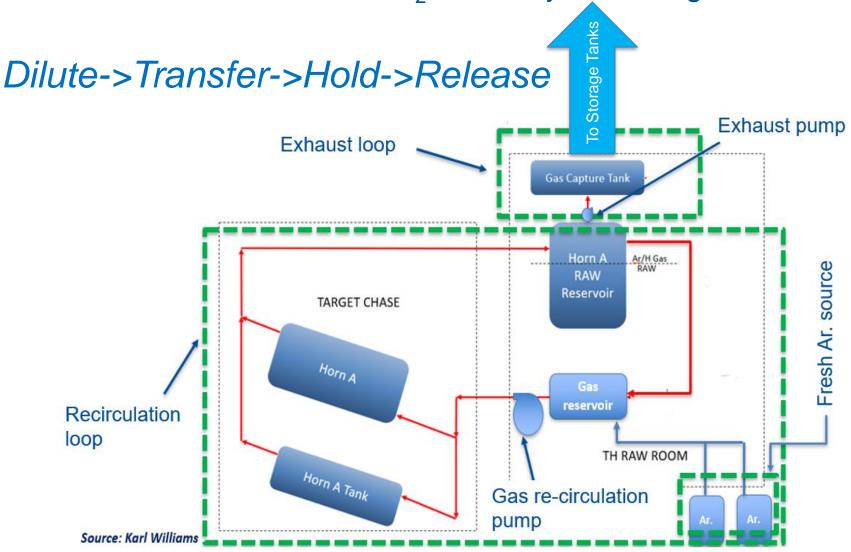

Source: Dune-doc-20744

Motivation

- Since the RAW systems are closed loop, there is a potential for H₂ gas build up to explosive limits.
- The Lower Explosive Limit (LEL) of H₂ in air is ~4%. This is the lowest concentration at which H₂ can become flammable in the presence of an ignition source in air at 14.69 Psia and 25 C (NFPA 55)—more on this later.
- The H₂ build-up is not a new problem. We have dealt with this in NuMI. In NuMI, fresh Ar gas is pumped into the Horns. It is then collected in RAW expansion tanks and vented back into Target Hall atmosphere.
- We cannot do this in LBNF Horn systems because higher powers produces more ⁴¹Ar, which is radioactive.
- Hence, we need a system to control H_2 and ⁴¹Ar.


Hydrogen Flammability

 Flammability of H₂ in Argon was tested by Fauske LLC at different pressures at 90 ⁰F


System Design

• General idea behind the H₂ control system design:

System Design

• General idea behind the H₂ control system design:

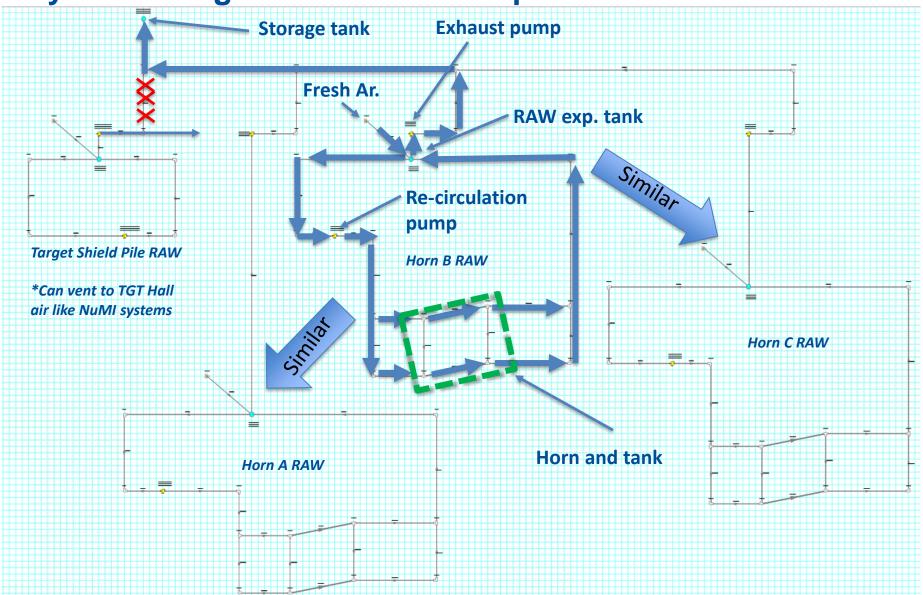
System Design

Inside the Horns: **Re-circulation** loop return **Re-circulation** loop supply **Conductor Purge** Outlet **Conductor Purge** Inlet Water Tank Water Tank **Purge Outlet** Purge Inlet

System Design: Requirements at 2.4 MW beam power

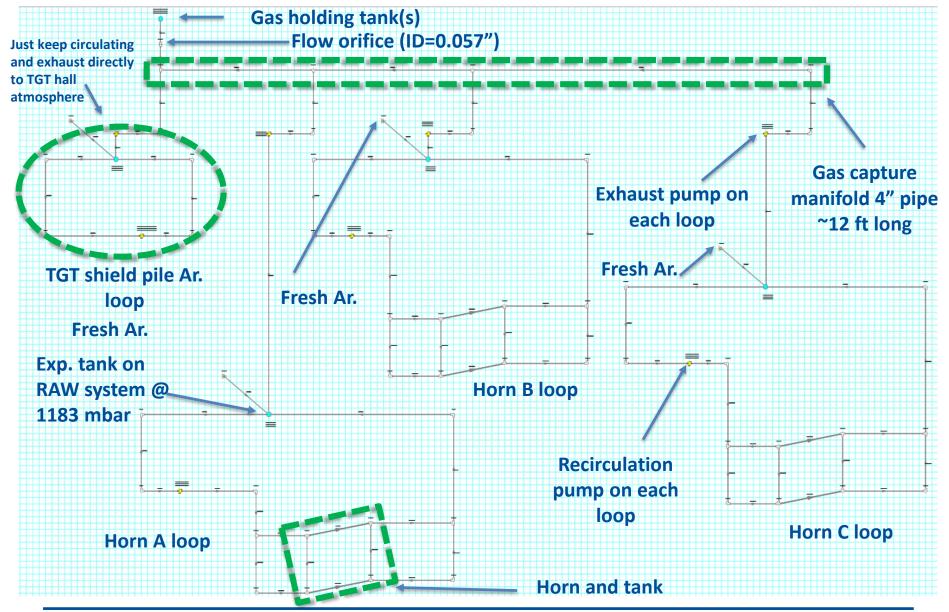
Required Argon flow rates to dilute H₂:

Source: Kamran Vaziri, Dune-doc-19315

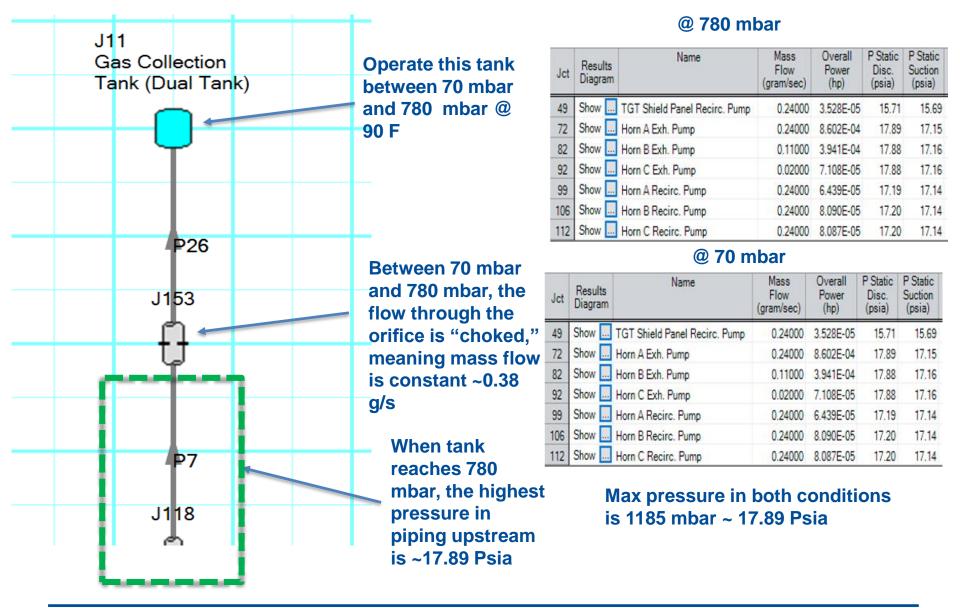

	Hydro	gen gas produ	uction rate at 2.4	MW beam	power	H ₂ O lost	Argon gas	Horn Argon		⁴¹ Ar*
RAW system	(gal/sec)	(gal/hr)	(gal/day)	(gal/wk)	(gal/yr)	(gal/yr)	(sccm)	(Sccm)		(Ci/year)
Cooling Panels	3.83E-04	1.38	33.12	231.83	6773.98	5.44	8706	0.03		1.06E-05
Horn_A	4.01E-04	1.44	34.63	242.42	7083.50	5.69	9128	9128	Exposed	7658
Horn_B	1.79E-04	0.64	15.45	108.17	3160.66	2.54	4155	4155	to beam	1182
Horn_C	3.92E-05	0.14	3.38	23.68	692.03	0.56	973	973	spray	322
T_blocks	7.05E-05	0.25	6.09	42.64	1245.91	1.00	1601	0.03		1.06E-05
Modules	2.55E-06	0.01	0.22	1.54	45.05	0.04	58	0.03		1.06E-05
Target Helium HX	5.24E-11	1.89E-07	4.53E-06	3.17E-05	9.26E-04	7.44E-07	0.0012	0.03		1.06E-05
Totals	1.08E-03	3.87	92.9	650	19001	15	24621	14256		9162
Hadron Absorber	7.61E-05	2.74E-01	6.57E+00	4.60E+01	1.34E+03	1.08E+00	1728	0.03		1.10E-06

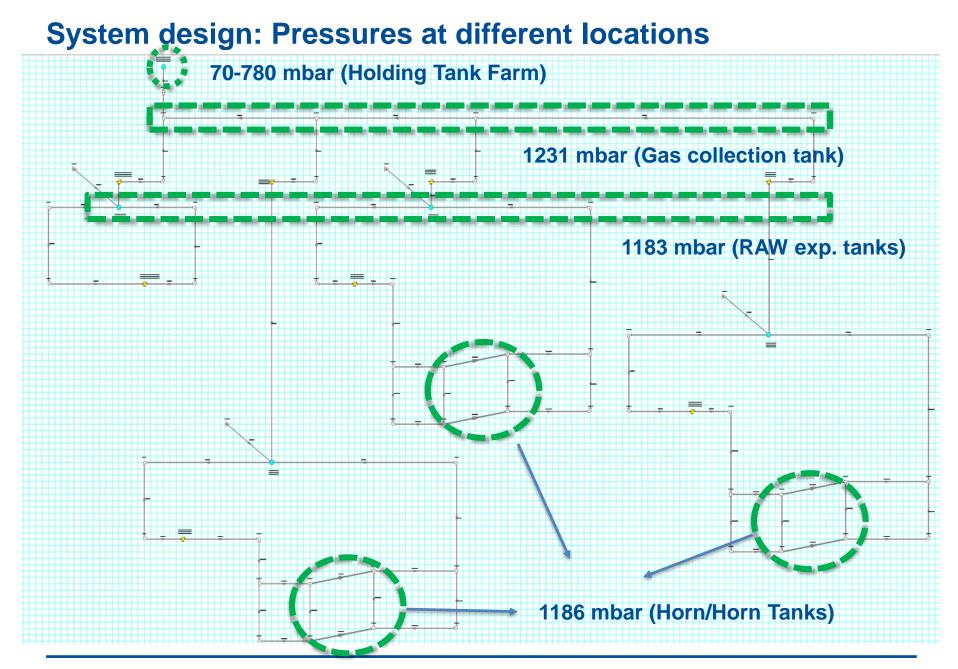
Hydrogen gas production rate at 2.4 MW at STP								
			Flush rate,	Mass flow rate,				
System	H ₂ prod, Gal/Hr.	H ₂ prod, cc/min.	cc/min¹	g/sec				
T arget Shield Pile RAW	1.38	87.06	8706					
Horn A RAW	1.44	90.85	9085	0.25				
Horn B RAW	0.64	40.38	4038	0.11				
Horn C RAW	0.14	8.83	883	0.02				
Total flush rate from RAW systems> ²			14006	0.38				
Notes:								
1). Flush rate to keep H ₂ below 1%. With this, we have a SF of ~3.								
2). Total flush rate if no re-combination is used.								

System Design: Requirements at 2.4 MW beam power

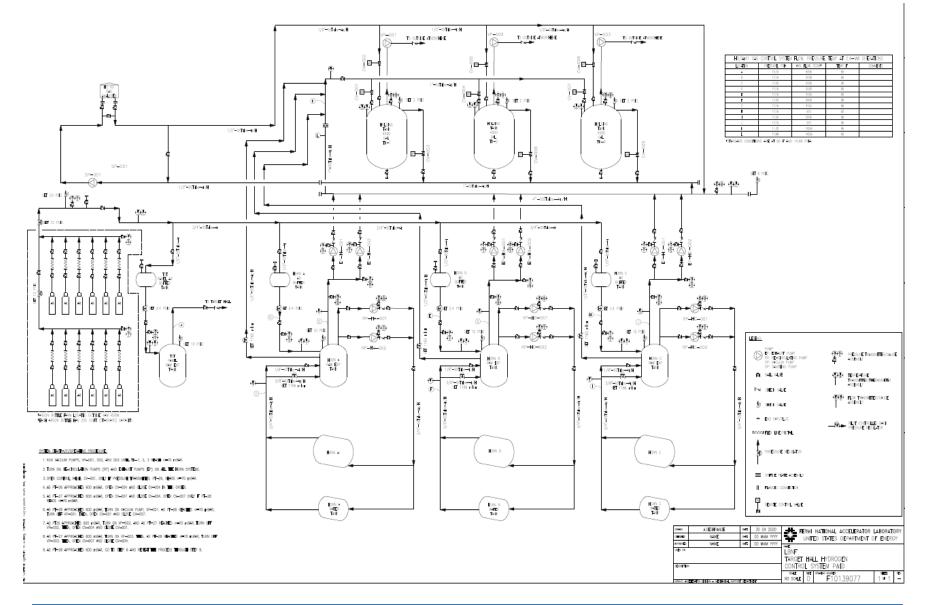

- Horn external pressure requirement (Target Hall Bunker)=16.16 Psia.
- Horn internal pressure shall be between 16.16 Psia and 18.16 Psia.
- These requirements are in: <u>https://fermipoint.fnal.gov/project/LBNF/Near%20Site/Beamline/</u> <u>Shared%20Documents/Forms/AllItems.aspx</u>
- The flush rates in the previous slide are also present in the above parameters sheet.

	A	н	1	J	к	L	м	N
1	LBNF Beamline Design Parameters Spreadsheet							
2	Horns [Cory Crowley-FNAL]							
3								
4	This spreadsheet summarizes the design parameters for the LBNF Neutrino Beam Horns							
5	This spreadsheet summarizes the design parameters for the Low reading beam rous							
6	Parameter/Specification	Horn A	Horn A Module	Horn B	Horn B Module	Horn C	Horn C Module	Units
7	Maximum Beam Power (MW)	1.2	2.4	1.2	2.4	1.2	2.4	
37	Instrumentation Line Weight	A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	lbs
38	Half Component Weight	1750	Line Weight Transferred to Device	5000	Line Weight Transferred to Device	3750	Line Weight Transferred to Device	lbs
39	U.S. Utility Line Weight	1,040	Line Weight Transferred to Device	1040	Line Weight Transferred to Device	1040	Line Weight Transferred to Device	lbs
40	U.S. Instrumentation Line Weight	0	Line Weight Transferred to Device	0	Line Weight Transferred to Device	0	Line Weight Transferred to Device	lbs
41	D.S. Utility Line Weight	300	Line Weight Transferred to Device	500	Line Weight Transferred to Device	500	Line Weight Transferred to Device	lbs
42	D.S. Instrumentation Line Weight	570	Line Weight Transferred to Device	570	Line Weight Transferred to Device	570	Line Weight Transferred to Device	lbs
43	Module Vertical Drive System Weight	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	lbs
44	Stripline Offset Force Required		2,012		2107		2162	Ibs-force
45	Module Wall Span	71			132.5	83		inch
46	Stripline Offset	13			30.875		22	inch
47	U.S. Supply Line Weight @ 10' Average Length	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	lbs
48	D.S. Supply Line Weight @ 10' Average Length	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	N/A	Line Weight Transferred to Device	lbs
49	D.S. Ejector System Weight @ 10' Average Length (Single Ejector)	N/A	N/A Line Weight Transferred to Device				Line Weight Transferred to Device	lbs
50	Total U.S. Vertical Drive System Force Required			7127		8539		Ibs-force
51	Total D.S. Vertical Drive System Force Required				9558		6201	Ibs-force
52	Cooling							
53	Helium Supply Temperature (Nominal, Range) (Celcius)	N/A	N/A	N/A	N/A	N/A	N/A	С
54	Helium Return Temperature (Nominal, Range) (Celcius)	N/A	N/A	N/A	N/A	N/A	N/A	С
55	Nitrogen Supply Temperature (Nominal, Range)			75F, +5F / -30F				F
56	RAW Supply Temperature (Nominal, Range)				70F, +5F / -10F			F
57	SLB Nitrogen Flow							
58	Flow Rate, CFM @ 2.4MW		3,000 3,000				3,000	CFM
59	Supply Pressure (PSI)				1.1			Atm
60	Maximum Required Flow Rates							
61	Inner Conductor Line - BRU (1.5" OD Tube W/Swage Connection @ Horn)	8	N/A	25	N/A	15	N/A	GPM
62	Inner Conductor Line - BRL (1.5" OD Tube W/Swage Connection @ Horn)	8	N/A	25	N/A	15	N/A	GPM
63	Inner Conductor Line - BLL (1.5" OD Tube W/Swage Connection @ Horn)	8	N/A	25	N/A	15	N/A	GPM
		<	/-				/-	
4	Radiation Safety Magnet Production Magnet Power Supp	ies Prima	ry Water Systems Beam Instr	rumentation	Primary Vacuum Magnet In:	stallation	Beam Windows Targetry	Horns

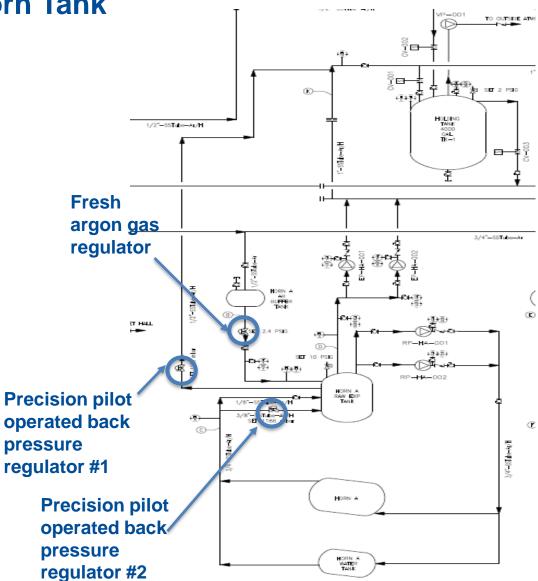



System design: AFT Arrow Compressible Fluid flow

System design: AFT Arrow Compressible Fluid flow model



System design


System design: Preliminary P&ID

LBNF

System design: Pressure compensation between RAW expansion tank and Horn Tank

- Three regulators sized to maintain pressures in the Horn and the RAW expansion tank.
- A very low-pressure regulator for argon supply.
- Two pilot operated back-pressure regulators for Ar/ H₂ mixture loop

System design: Pressure compensation between RAW expansion tank and Horn Tank

Sizing of back pressure regulat Parameter	Value Units	Comments	Parameter	Value	Units	Comments
		Percentage of Argon	99 %		Connents	
Percentage of Hydrogen	1 %		Percentage of Hydrogen	-	1 %	
Specific gravity, Argon	1.38		Specific gravity, Argon	1.3		
	0.069		Specific gravity, Hydrogen	0.06		
Specific gravity, Hydrogen Specific gravity of mixture	1.36689		Specific gravity of mixture	1.3668		
Specific heat of Argon, Cp	0.52 kJ kg^-1 K^-1		Specific heat of Argon, Cp		2 kJ kg^-1 K^-1	
	v					
Specific heat of Hydrogen, Cp	14.32 kJ kg^-1 K^-1		Specific heat of Hydrogen, Cp		2 kJ kg^-1 K^-1	
Specific heat of mixture, Cp	0.658 kJ kg^-1 K^-1		Specific heat of mixture, Cp		8 kJ kg^-1 K^-1	
Specific heat of Argon, Cv	0.312 kJ kg^-1 K^-1		Specific heat of Argon, Cv		2 kJ kg^-1 K^-1	
Specific heat of Hydrogen, Cv	10.16 kJ kg^-1 K^-1		Specific heat of Hydrogen, Cv		6 kJ kg^-1 K^-1	
Specific heat of mixture, Cv	0.41048 kJ kg^-1 K^-1		Specific heat of mixture, Cv		8 kJ kg^-1 K^-1	
Ratio of specific heats of mixture	1.60		Ratio of specific heats of mixture	1.6		
Gas upstream temperature	545 R		Gas upstream temperature	54	5 R	
Jpstream pressure, P1	17.2 Psia	Horn Tank pressure.	Upstream pressure, P1	17.	2 Psia	Horn Tank pressure.
Downstream pressure, P2	17.15 Psia	RAW expansion tank pressure.	Downstream pressure, P2		1 Psia	Vacuum loop pressure.
Differential pressure, ∆P	0.05 Psia		Differential pressure, ∆P	16.3	2 Psia	
Pressure drop ratio, x	0.003		Pressure drop ratio, x	0.94	2	
Ratio of specific heats factor, Fk	1.145		Ratio of specific heats factor, Fk	1.14	5	
Pressure drop ratio required to produce			Pressure drop ratio required to produce			
critical flow, xt	0.496		critical flow, xt	0.49	6	
Expansion factor, Y	1.00		Expansion factor, Y	0.4	5	
Compressibility factor, Z	0.99		Compressibility factor, Z	0.9	9	
Units conversion factor, N7	1360		Units conversion factor, N7	136	D	
Pipe geometry factor, Fp	1		Pipe geometry factor, Fp		1	
Required volumetric flow	9000 Sccm		Required volumetric flow	900	0 Sccm	
Valve flow coefficient. Cv	0.411		Valve flow coefficient. Cv	0.05	1	

Sizing of low pressure regulator between Argon source and Horn RAW expansion tank								
Parameter	Value	Units	Comments					
Percentage of Argon	100	%						
Percentage of Hydrogen	0	%						
Specific gravity, Argon	1.38							
Specific gravity, Hydrogen	0.069							
Specific gravity of mixture	1.38							
Specific heat of Argon, Cp	0.52	kJ kg^-1 K^-1						
Specific heat of Hydrogen, Cp	14.32	kJ kg^-1 K^-1						
Specific heat of mixture, Cp	0.52	kJ kg^-1 K^-1						
Specific heat of Argon, Cv	0.312	kJ kg^-1 K^-1						
Specific heat of Hydrogen, Cv	10.16	kJ kg^-1 K^-1						
Specific heat of mixture, Cv	0.312	kJ kg^-1 K^-1						
Ratio of specific heats of mixture	1.67							
Gas upstream temperature	545	R						
Upstream pressure, P1	20	Psia	Argon gas bottle farm regulator downstream pressure					
Downstream pressure, P2	17.15	Psia	RAW expansion tank pressure.					
Differential pressure, ∆P	2.85	Psia						
Pressure drop ratio, x	0.143							
Ratio of specific heats factor, Fk	1.190							
Pressure drop ratio required to produce critical								
flow, xt	0.487							
Expansion factor, Y	0.92							
Compressibility factor, Z	0.99							
Units conversion factor, N7	1360							
Pipe geometry factor, Fp	1							
Required volumetric flow	9000	Sccm						
Valve flow coefficient, Cv	0.055							

$$C_v = \frac{q}{N_7 F_p P_1 Y_v \sqrt{\frac{x}{G_g T_1 Z}}}$$

$$Y = 1 - \frac{x}{3F_k x}$$

where,

- $F_{k} = k/1.4$, the ratio of specific heats factor
- k = Ratio of specific heats
- $\mathbf{x} = \Delta \mathbf{P} / \mathbf{P}_1$, the pressure drop ratio
- x_T = The pressure drop ratio factor for valves installed without attached fittings. More definitively, x_T is the pressure drop ratio required to produce critical, or maximum, flow through the valve when $F_k = 1.0$

System design: Pressure compensation between RAW expansion tank and Horn Tank

Back pressure regulator (pilot control)

EQUILIBAR.

BASE	MAX. PRESSURE RATING ¹	FLOW CO	EFF. (CV)	INLET / OUTLET	REFERENCE	PORT TI	IREADS	DIM A	DIM B
PART #	PSIG (BAR)	MIN	MAX	PORT SIZE	PORT SIZE	STANDARD	OPTIONAL	інсн (мм)	
	Stainless Steel 316/316L, Hastelloy C276, Titanium, Monel and Zirconium Models								
GSD2/GS2	750 (51)							3.00 (76)	1.34 (34)
GSDM2	1000 (68)		1.20	1/4"	1/8"		B, C, O, R, S, T	3.25 (83)	1.34 (34)
GSDH2	2500 (172)							3.30 (84)	1.60 (41)
GSD3/GS3	400 (28)			· <u> </u>				3.50 (89)	1.40 (36)
GSDM3	800 (55)	1E-03	1.80 3.20					3.75 (95)	1.54 (39)
GSDH3	1400 (97)							3.85 (98)	1.78 (45)
GSD4/GS4	350 (24)							4.50 (114)	1.73 (44)
GSDM4	750 (52)						B, C, F, G, O, R, S, T	5.00 (127)	1.85 (47)
GSDH4	1400 (97)							5.00 (127)	1.98 (50)
GSD6/GS6	300 (21)							6.00 (152)	2.01 (51)
GSDM6	800 (55)		5.50	3/4"				6.25 (159)	2.44 (62)
GSDH6	1600 (110)	1E-02					-,.,-, '	6.40 (163)	2.90 (74)
GSD8/GS8	150 (10)	16-05			T			7.00 (178)	2.50 (64)
GSDM8	500 (34)		8.50	1"				7.25 (184)	2.76 (70)
GSDH8	2100 (145)							7.80 (198)	3.33 (85)

Argon supply low-pressure regulator

Model 3700 Series Low Pressure Line Regulator

A general purpose line regulator designed for low inlet pressure

and low delivery pressure applications with non-corrosive gases.

Description

Applications

Control of constant fuel burner flame.

· Inert gas blanketing at low pressures.

Design Features/Components

- Zinc body
- Rubber diaphragm
- 2-1/2" delivery pressure gauge 3701
- 3-1/2" delivery pressure gauge 3702/3703
- Porous metal filter protects seat from contamination
- 1/4" NPTM inlet/outlet connection with loose hose barb
- Pressure adjusting screw protected by "security cap"

Materials of Construction

Gauges:	Chrome plated brass
Body:	Cast zinc
Bonnet:	Die cast zinc
Diaphragm:	Natural rubber
Seat:	Natural rubber
Seals:	Natural rubber

Specifications

Maximum Inlet Pressure: 25 Maximum Flow Rate: M (At 200 psig, N₂) M Flow Capacity (Cv): 0, Operating Temperature: 4 Porting (Regulator Body): 1/ Porting Configuration: 11

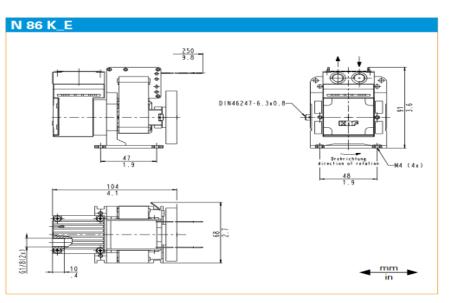
Shipping Weight:

250 psig (1,725 kPa) Model 3701A: Less than 35 SLPM Model 3702: 260 SCFH (123 SLPM) Model 3703: 350 SCFH (165 SLPM) 0.8 ✓ -40°F to 150°F (-40°C to 65°C) 1/4″ NPT Female 1 High, 1 Low 7 lbs

Ordering Informatio	n	
Part Number**	Delivery Pressure Range	Delivery Pressure Gauge
SEQ3701A	2-25" water column	0-35" water column
SEQ3702	0.5-5.0 psig	0-10 psig*
SEQ3703	5-10 psig	0-10 psig*

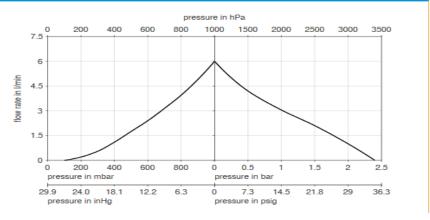
317

22 12/18/2020 A. Deshpande | LBNF Target Hall H2 and Ar41 Control System Design

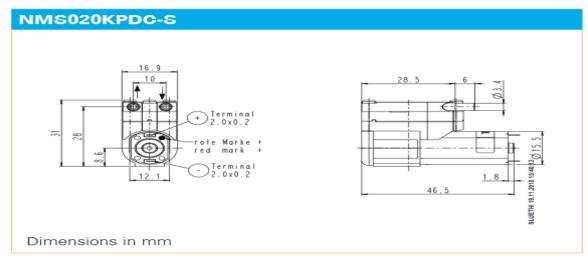

System design: Pumps

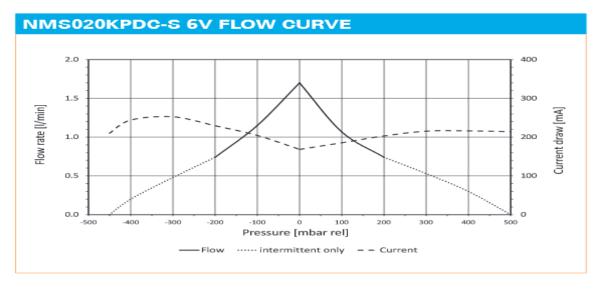
All recirculation loop and Horn A Exhaust pumps

N 922 FTE 8L

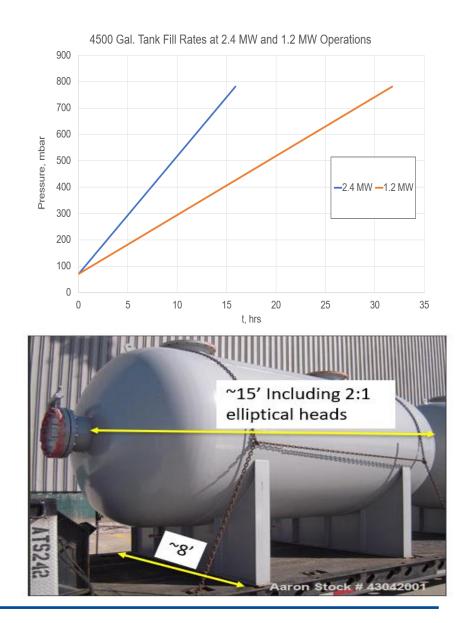

Horn B exhaust loop pumps

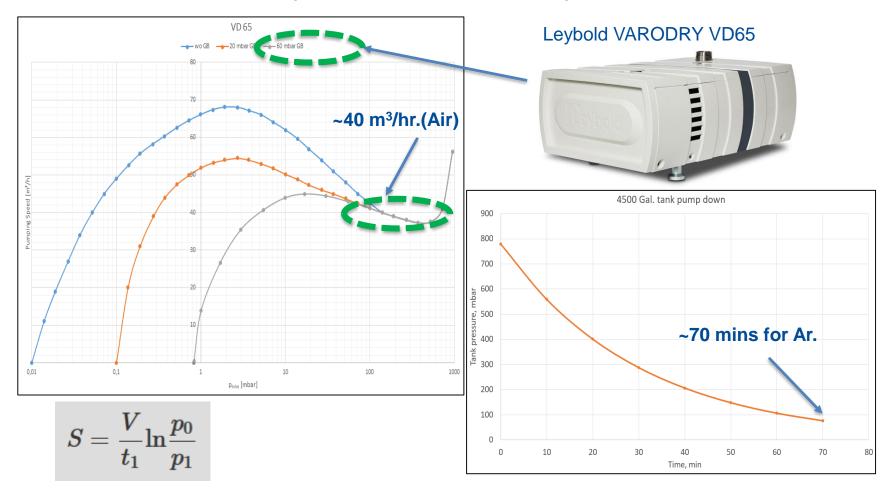
pressure in hPa 1400 0 200 400 600 800 1000 1800 2200 2600 3000 10 8 flow rate in l/min 6 4 2 0 0 200 400 600 800 0 0.4 0.8 1.2 1.6 2 pressure in mbar pressure in bar 29.9 24.0 18.1 12.2 6.3 5.8 11.6 17.4 23.2 29 0 pressure in inHg pressure in psig


Flow rate determined at 20°C, 1013 mbar abs. (Pressure 0 to 1013 mbar abs. in accordance with ISO 21360-1/2)


N 86 KNE

System design: Pumps

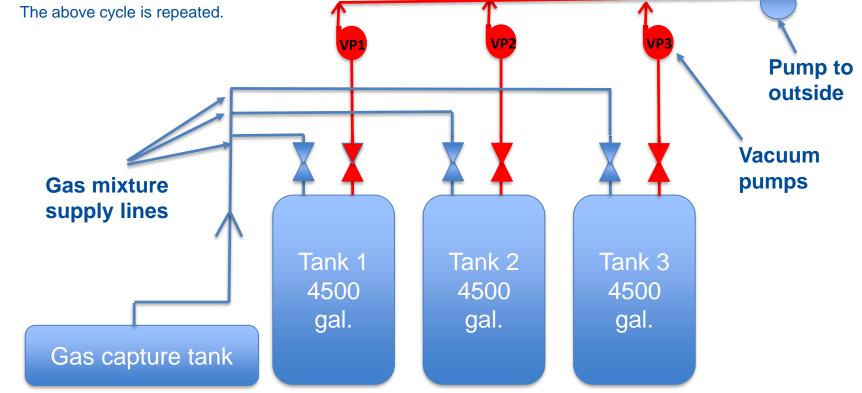

Horn C exhaust loop pumps


System design: Tank fill rate

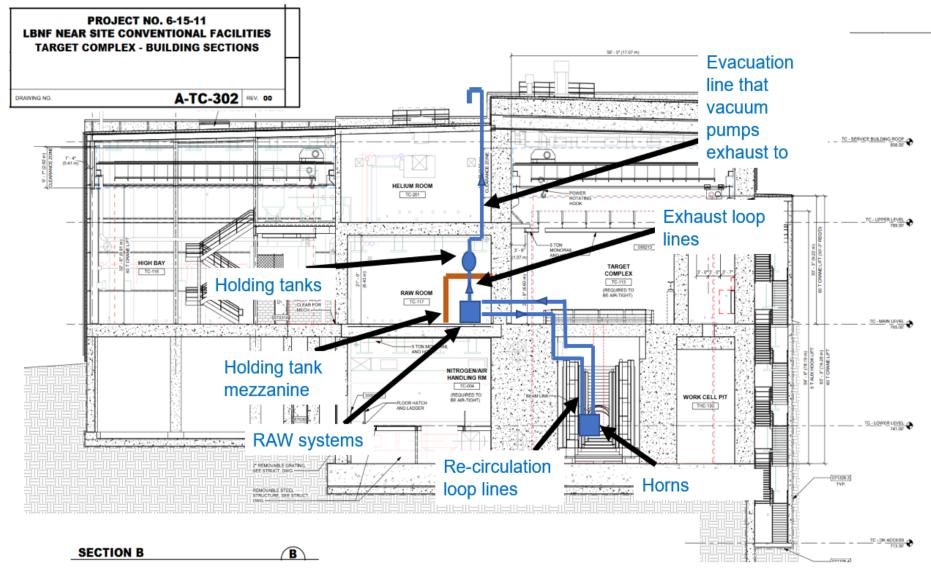
- A 4500 Gal. tank takes approximately 16 hours to operate between 70 mbar and 780 mbar pressure (2.4 MW line).
- The tank is an ASME code tank capable of operating at full vacuum, 0 Psia.
- The tank is approximately 8500 lb. when its empty.

System design: Purge time from 780 mbar to 70 mbar

• A 4500 Gal. tank will operate between above pressures for ~16 hours.


One 4500 Gal. tank will blow-down from 780 mbar to 70 mbar in ~70 min.

System design: 3-Tank Operation at 2.4 MW


- The system operation will be designed to be automatic, that is, not like the NuMI feed/bleed system where the process is carried out by trained personnel.
- Step-1 \rightarrow Fill Tank 1 for 10 hours.

٠

- Step-2→ Start filling Tank 2. Close Tank 1. Fill Tank 2 for 10 hours.
- Step-3→ Start filling Tank 3. Close Tank 2. Fill Tank 3 for 10 hours.
- Step-4 \rightarrow While Tank 3 is filling, evacuate Tank 1. Start filling Tank 1, close Tank 3.
- Step-5→Fill Tank 1 for 10-hours. While Tank 1 is filling, evacuate Tank 2. After Tank 2 is evacuated, start filling Tank 2, close off Tank 1.
- Step-6→ Fill Tank 2 for 10 hours. At the end of 10 hours, start evacuating Tank 3. After this is done, start filling Tank 3 and close off Tank 2.

System design: General layout

DUNE-doc-20744, drawings volume 1 and 2

LBNF

System design: Standards

Component/System	Standards
H ₂ / ⁴¹ Ar gas piping system	FESHM 5031.1—Piping Systems
	ASME B31.3 Normal Fluid Systems
	 FESHM 6020.3—Storage and Use of Flammable gases
Holding tanks	FESHM 5033—Vacuum Vessels Chapter
	 ASME Section VIII BPVC (Code Stamped Vessel)
Mezzanine system	FESHM 5100—Structural Safety
	• IBC2015
RAW cooling systems	 FESHM 5031.1—Piping Systems
	ASME B31.3 Normal Fluid Systems

System design: Safety and Parameter Summary

Parameter	Total volume, m^3	H2 volume, m^3	Amount of H2 at 17.2 Psia, moles2	Mass of H2 at 17.2 Psia, Kg
Horn A gas volume ¹	0.71	0.007	0.35	6.98E-04
Horn B gas volume ¹	6	0.060	2.93	5.90E-03
Horn C gas volume ¹	3.12	0.031	1.53	3.07E-03
Target shield panel expansion tank volume	0.56	0.006	0.27	5.51E-04
Total volume of TK-1, 2, and 3	45.42	0.454	22.21	4.47E-02
Total				5.26E-02
Safety Factor ³				10.94

FESHM 6020 System Risk Class 0

Notes:

1. This includes the total gas volume in the Horn A, B, and C. Including the gas volume in the RAW system expansion tank.

- 2. This is the number of moles of H2, 1% of the total volume, at 17.20 Psia and 90 °F.
- 3. Safety factor is determined by dividing 0.6 Kg with the available amount of H2 in the system.

Parameter	Value	Units	Comments
Recirculation loop pressure	17.20	Psia	This is absolute pressure
Exhaust loop pressure	17.85	Psia	This is absolute pressure
Vacuum loop pressure	11.30	Psia	This is absolute pressure
Horn A, B, and C recirculation mass flow	0.24	g /s	
rate			
Horn A exhaust mass flow rate	0.24	g /s	
Horn B exhaust mass flow rate	0.11	g /s	
Horn C exhaust mass flow rate	0.02	g /s	
All loops temperature	90	°F	
Exhaust loop orifice diameter	0.057	In.	
H2 concentration	1	% v/v	
Ar40 concentration	99	%v/v	
Holding time in TK-1, 2, or 3	18	hr.	Dune-doc-19315 [3]
Tank volume	4500	Gal.	
Fill time in TK-1,2, or 3	10	hr.	

System Parameters

Conclusions

- The system is sized to keep the H₂ concentration at 1% by volume in the Horn RAW systems. The LFL of H₂ in Argon is 3.13%. This gives a factor of safety of ~3. At the same time, the Horns are maintained between 16.16 Psia and 18.18 Psia.
- The tanks provide enough decay time and prevent exposure of ⁴¹Ar to personnel.

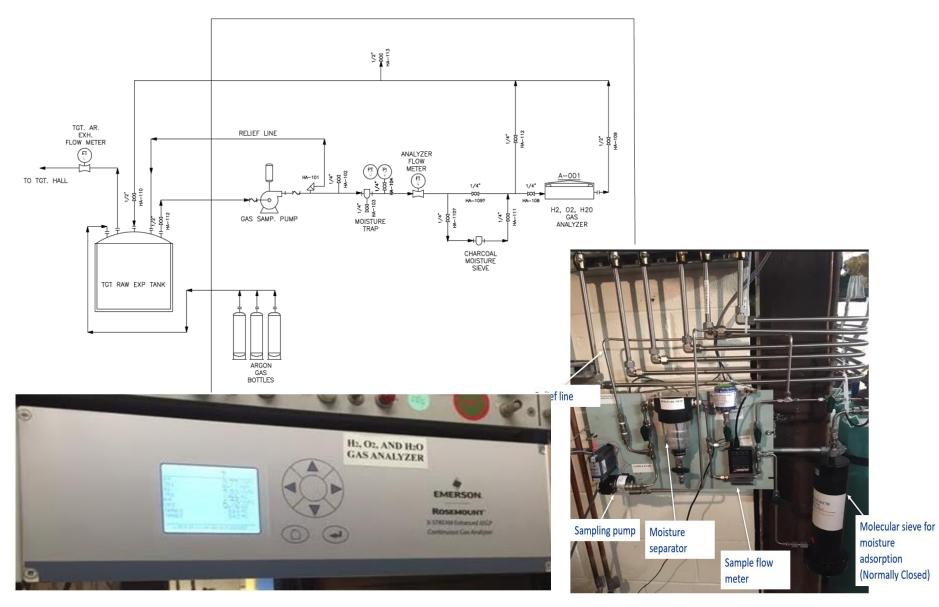
Fill #1	10 hrs				
Close #1, change over to #2	0.5 hrs				
		Fill #2	10 hrs		
Cool #1	18.5 hrs	Close #2, change over to #3	0.5 hrs		
Purge #1	1 hrs			Fill #3	10 hrs
		Cool #2	18.5 hrs	Close #3 change over to #1	0.5 hrs
		Purge #2	1 hrs		
				Cool #3	18.5 hrs
				Purge #3	1 hrs

Table 4. One complete cycle of fill, cool and purge for the three-tank system

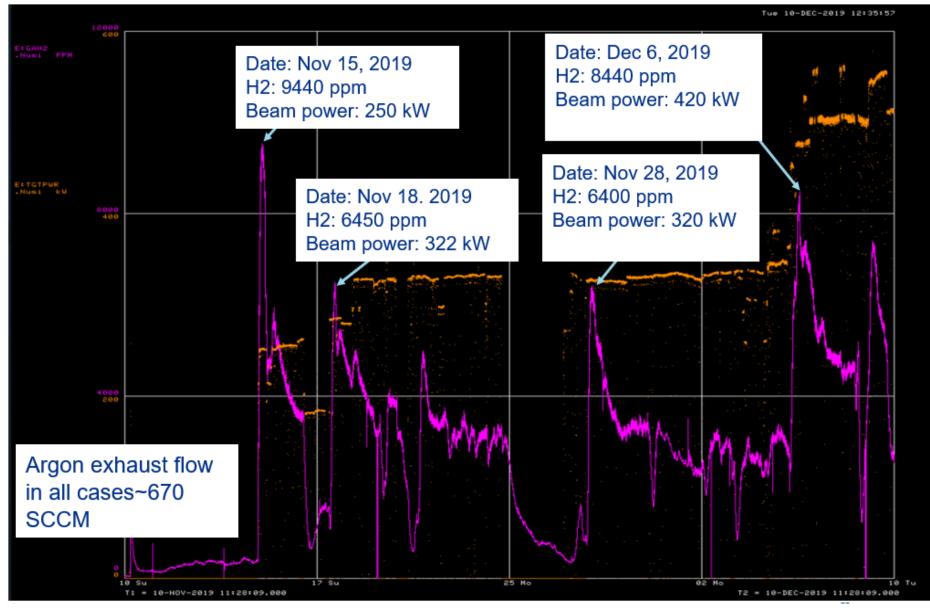
Table 6. One complete cycle of fill, cool and purge for the two-tank system at 2.4 MW.

Fill #1	15.5 hrs		
Close #1, change over to #2	0.5 hrs		
		Fill #2	15.5 hrs
Cool #1	14 hrs	Close #2, change over to #1	0.5 hrs
Purge #1	1 hrs		
		Cool #2	14 hrs
		Purge #2	1 hrs

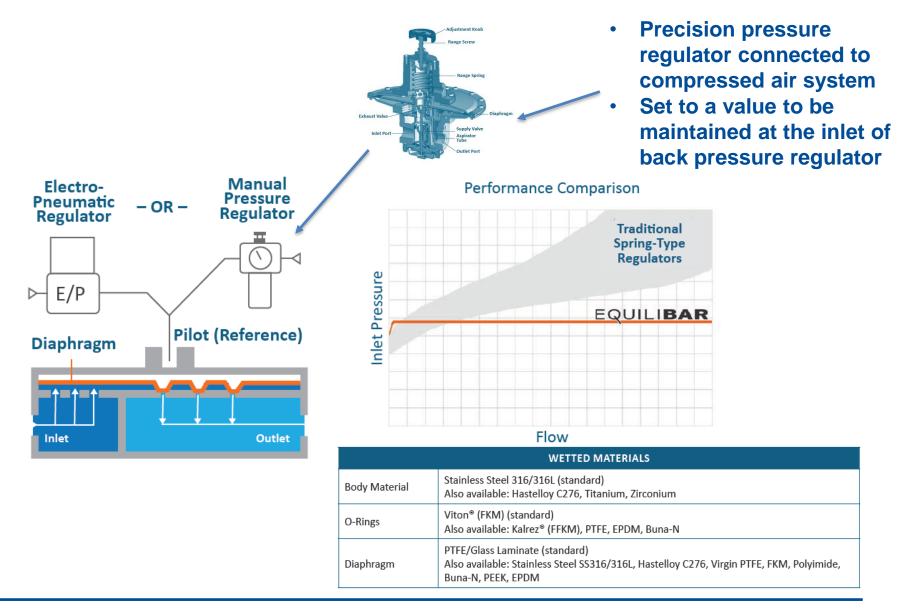
Conslusions

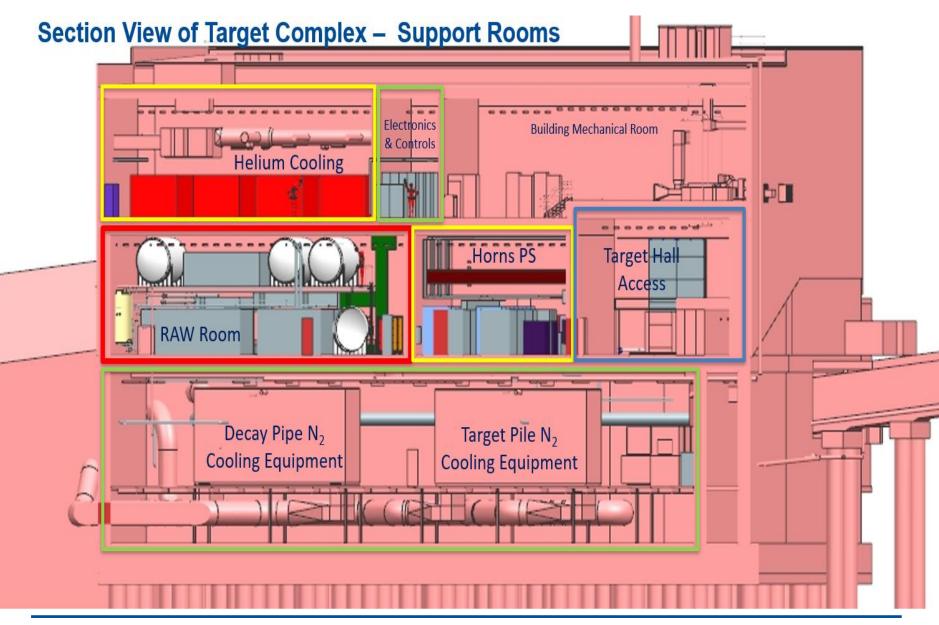

- All the instrumentation used will be rad-hard. Like the ones used on the RAW system.
- The H₂/⁴¹Ar control system will be interlocked to several beam control systems.
- As per FESHM chapter 6020.3—Storage and Use of Flammable Gases, this system falls in Class 0 risk category as it has less than 0.6 Kg of Hydrogen.
- The pressure stabilizing system could be prototyped to understand its operational nuances.
- The moisture element is not modeled here. This can be tackled by installing charcoal absorbers in the exhaust loops.
- A detailed installation procedure for the mezzanine and the holding tank systems needs to be developed.

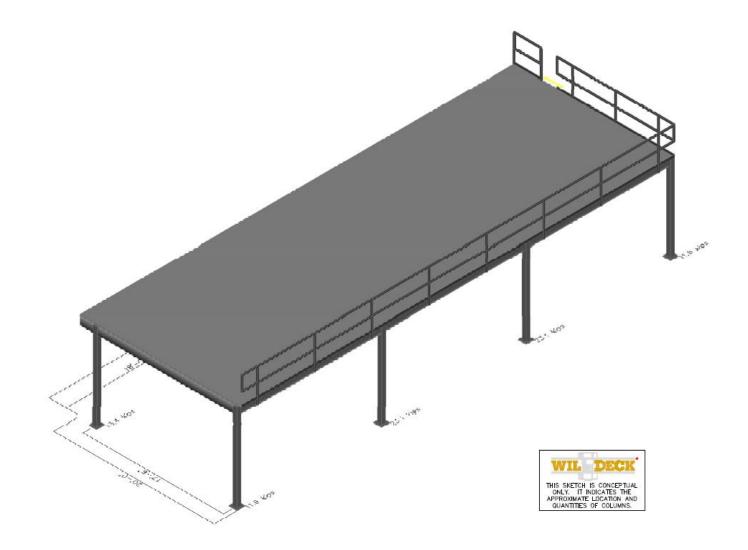
Conslusions


- A detailed ODH analysis will be done for the Target Hall RAW room and connected volumes.
- During operations, the fresh Argon bottle farm may be replaced by a bank of LAr dewars located outside the Target Hall Complex.

Discussion and questions


Back-up: NuMI Gas Sampling


Back-up: NuMI Gas Sampling


Back-up: Pilot Operated Back Pressure Regulator

Back-up: Mezzanine system

Back-up: Mezzanine system

