

Toward Physics Studies with Dual-Readout Calorimeter for Future e+e- Colliders

Hwidong Yoo (Yonsei Univ.)

On behalf of the Korea

Dual-Readout Calorimeter team

Dual-Readout Calorimeter (DRC)

The dual-readout calorimetry

- The major difficulty of measuring energy of hadronic shower comes from the fluctuation of EM fraction of a shower, f_em.
- f_em can be measured by implementing two different channels with different h/e response in a calorimeter.

$$\begin{split} S &= E \big[f_{em} + \frac{1}{(e/h)_S} (1 - f_{em}) \big], \\ C &= E \big[f_{em} + \frac{1}{(e/h)_C} (1 - f_{em}) \big]. \\ \\ f_{em} &= \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S) \big[1 - (h/e)_S \big] - \big[1 - (h/e)_C \big]} \end{split} \qquad E = \frac{S - \chi \, C}{1 - \chi}. \end{split}$$

- Dual-readout calorimeter offers high-quality energy measurement for both EM particles and hadrons.
- Excellent energy resolution for hadrons can be achieved by measuring f_em and correcting the energy of hadron event-by-event.

Energy measured from scintillation channel vs Cerenkov channel for EM particle, $\pi \& p$.

More than 20 years R&D: CERN RD52 experiment

Signal generation: Scintillating & Cerenkov fibers

DRC Geometry and Module

International Collaboration

Big international collaboration for Dual-Readout Calorimeter is forming

- Regular meeting
- Compensated R&D options
- Combine efforts

Prof. Paolo Giacomelli (Bologna)

Prof. Romualdo Santoro (Insubria)

Prof. Roberto Ferrari (Pavia)

Prof. Franco Bedeschi (Pisa)

Prof. lacopo Vivarelli

US

Prof. Valery Chmill

Bucatini Project

Goal of DRC R&D in Korea

- Primary goal: build a prototype detector for the detector design of FCC-ee experiment
 - 5 year R&D funding supported by Korea NRF: \$2M for 5 years (2020 2025)
 - Consists of 16 modules (4 x 4): contain almost (97.5%) full hadronic shower energy
 - Demonstrate engineering aspects for full geometry detector
 - Optimize the performance of the detector

Secondary goal: train next generations as an expert of (DRC) calorimeter detector

Stage	Topic			
Design	Propose a design of Dual-Readout Calorimeter to IDEA detector concept			
R&D	Perform R&D (including engineering aspects) based on HW & SW			
Prototype	Build 4x4 detector and perform test beams			
Production	TBD			

Domestic Collaboration

Snowmass21 (SM2021)

- Excellent opportunity to
 - Integrate US and world-wide research campaign
 - Collect new domestic members for DR Cal activity in Korea
 - Increase visibility our local activity to international colleagues
- International dual-readout team prepared a single letter of interest (LoI): overview of dual-readout activities
 - https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF6-008.pdf
- Additional seven Lols related to the dual-readout calorimeter R&D project have been submitted too!
- Various MC production such as multi-jets, Higgs and tau events are underway with GEANT4 + DD4hep infrastructure
 - Aim to deliver 1st set of MC samples during Nov.
 - If interest using our MC samples, please contact us! (<u>hdyoo@cern.ch</u>)

Dual-Readout Calorimetry Letter of Intent - Snowmass 2027

August 15, 2020

Dual-Readout Calorimetry

Letter of Intent

3 Authors:

Jinky Agarwala^{1,2}, Nural Akchurin³, Sebastiano Albergo^{4,5}, Massimiliano Antonello^{6,7}, Sunanda Banerjee⁸, Franco Bedeschi⁹, Mihaela Bezak¹⁰, Massimo Caccia^{6,7}, Valery Chmill¹⁰, Christopher Cowden³, Jordan Damgov³, Sarah C. Eno¹¹, Roberto Ferrari², Gerardo Ganis¹², Gabriella Gaudio², Paolo Giacomelli¹³, Stefano Giagu¹4,15, John Hauptman¹6, Clement Helsens¹², Bob Hirosky¹¹, Aneliya Karadzhinova-Ferrer¹¹0, Sanghyun Ko¹², Shuichi Kunori³, Jason Lee¹², Sehwook Lee²₀, Yong Liu²¹, Marco Lucchini²², Harvey Newman²³, Toyoko Orimoto²⁴, Lorenzo Pezzotti¹², Giacomo Polesello², Edoardo Proserpio^{6,7}, Jianming Qian²⁵, Manqi Ruan²¹, Željko Samec¹⁰ Romualdo Santoro^{6,7}, Alan Sill³, Christopher G. Tully²², Iacopo Vivarelli²6, Valentin Volkl¹², Hwidong Yoo²², Ren-Yuan Zhu²³

¹Università degli Studi di Pavia; ²INFN, Pavia; ³Texas Tech University; ⁴Università degli Studi di Catania; ⁵INFN, Catania; ⁶Università degli Studi dell'Insubria; ⁷INFN, Milano; ⁸Fermi National Laboratory; ⁹INFN, Pisa; ¹⁰Ruder Bošković Institute; ¹¹University of Maryland; ¹²CERN; ¹³INFN, Bologna; ¹⁴Università La Sapienza, Roma; ¹⁵INFN, Roma I; ¹⁶Iowa State University; ¹⁷University of Virginia; ¹⁸Seoul National University; ¹⁹University of Seoul; ²⁰Kyungpook National University; ²¹IHEP, Beijing; ²²Princeton University; ²³California Institute of Technology; ²⁴Northeastern University; ²⁵University of Michigan; ²⁶University of Sussex; ²⁷Yonsei University.

SM2021 with DRC in Korea

- Topic 1: Feasibility study of combining a MIP Timing Detector with the Dual-readout Calorimeter at future e+e- colliders (link)
 - Collaborators: D. Stuart (UCSB), C.S. Moon (KNU), J.H. Yoo (Korea Univ.)
- Topic 2: Heavy flavor tagging using machine learning technique with silicon vertex detector and Dual-Readout Calorimeter at future e+e- colliders (link)
 - Collaborators: J. Huang (BNL), Q. Hu (LLNL), S.H. Lim (PNU)
- Topic 3: tau reconstruction and identification using machine learning technique with Dual-Readout Calorimeter at future e+e- colliders (link)
 - Collaborators: M. Murray (U. of Kansas), Y.S. Kim (Sejong Univ.), Y.J. Kwon (Yonsei Univ.)
- Topic 4: Sensitivity study of H->Zγ with Dual-Readout Calorimeter at future e+e- colliders (link)
 - Collaborators: Y. Maravin (Kansas State Univ.), K.W. Nam (Kansas State Univ.)
- Topic 5: Multi-object identification with Dual-Readout Calorimeter at future e+e- colliders (link)
 - Collaborators: P. Chang (UCSD)
- Topic 6: Dual-Readout Calorimeter for the future Electron-Ion Collider (<u>link</u>)
 - Collaborators: S.H. Lim (PNU), H.S. Jo (KNU), Y.S. Kim (Sejong Univ.)
- Topic 7: Fast optical photon transport at GEANT4 with Dual-Readout Calorimeter at future e+e- colliders (link)

Feasibility study of combining a MIP Timing
Detector with the Dual-Readout Calorimeter at
future e⁺e⁻ colliders

J.H. Yoo¹, S.W. Lee, C.S. Moon², S.H. Ko³, D. Stuart⁴, S.H. Lee⁵, and J.W. Park, H.D. Yoo *⁶

¹Korea University, Republic of Korea
 ²Kyungpook National University, Republic of Korea
 ³Seoul National University, Republic of Korea
 ⁴University of California, Santa Barbara, USA
 ⁵University of Seoul, Republic of Korea
 ⁶Yonsei University, Republic of Korea

August 30, 2020

Heavy flavour tagging using machine learning technique with silicon vertex detector and Dual-Readout Calorimeter at future e⁺e⁻ colliders

J. Huang 1, Q. Hu 2, S.H. Lim 3, S.H. Lee, Y.J. Lee 4, and S.W. Kim, H.D. Yoo *5

¹Brookhaven National Laboratory, USA
 ²Lawrence Livermore National Laboratory, USA
 ³Pusan National University, Republic of Korea
 ⁴University of Seoul, Republic of Korea
 ⁵Yonsei University, Republic of Korea

August 31, 2020

au reconstruction and identification using machine learning technique with Dual-Readout Calorimeter at future e⁺e⁻ colliders

Y.S. Kim¹, M. Murray², and K.H. Kim, Y.J. Kwon, H.D. Yoo *3

Sejong University, Republic of Korea
 ²University of Kansas, USA
 ³Yonsei University, Republic of Korea

August 30, 2020

Sensitivity study of $H \to Z\gamma$ with Dual-Readout Calorimeter at future e^+e^- colliders

K.W. Nam, Y. Maravin¹ and H.D. Yoo *2

¹Kansas State University, USA ²Yonsei University, Republic of Korea

August 30, 2020

Multi-object identification with Dual-Readout Calorimeter at future e^+e^- colliders

P. Chang^a, S. K. Ha^b, K. Y. Hwang^b, H. D. Yoo^b

^aUniversity of California San Diego, USA
^bYonsei University, Republic of Korea

What Physics with DRC

- Considerable physics objects with DR Cal: (for example) Higgs->gg, bb, cc, ττ, γγ, Zγ, ZZ, WW, invisible
- Physics object goals
 - Hadronic channel
 - W/Z/H mass separation: energy resolution 3-4% level
 - 5D information: energy + hit (3D) + timing
 - Excellent jet flavour tagging
 - Need a co-work with VTX (tracking) detector R&D group
 - Discriminate quark (u, b, c) and gluon jets with ML
 - Tau channel
 - Clear separation gamma and pio reconstruction
 - Collimated topologies: separate gamma from close to hadronic showers
 - Related PID is quite important
- Need to check all necessary detector requirement for each physics topics (objects)

200

Energy Resolution

- Production of calibration constant with full GEANT4 simulation is on-going
 - Both barrel and endcap have been done
- Excellent EM and hadronic energy resolutions obtained by GEANT4 simulation
 - EM energy resolution: ~11%/sqrt(E)
 - Jet energy resolution: ~26%/sqrt(E)

Calibration Constants

Position Resolution

- Tested by e^- beams of 6 different energies
 - 10, 20, 40, 60, 80 and 100 GeV
- Position reconstructed by center of gravity of energies and compared with generated position

•
$$\overrightarrow{x}_{reco} = \frac{\sum_{i} E_{i} \times \overrightarrow{x}_{i}}{\sum_{i} E_{i}}$$
, $i : \#SiPM$

- Preliminary position resolution:
 - $4.2 \text{ mm}/\sqrt{E} + 0.4 \text{ mm}$

DD4hep Migration

Migrate dual-readout simulation framework to dd4hep

More details: S.H. Ko's talk in FCC workshop (link)

- DD4hep is the next-generation standard of detector description
- Preliminary version is already provided to FCCSW team

MC Taskforce in Korea-DRC

- Technical goal in our team: develop a proper MC sample infrastructure with the DRC R&D project
 - Practical goal for SM2021: provide physics MC samples with full GEANT4 simulation of the DRC detector (for the IDEA detector) to user groups
- We will help users can study the physics sensitivity under much more realistic experimental environment

MC production checklist

	Mendatory	Multi-jet	H→Zγ	
GEN-lv	Matrix-element (H, Z, W, τ) kinematics (Pt, η , ϕ)	Parton kinematics	Fermion(Z→ff) & γ kinematics	τ decay particle kinematics
	Matrix-element particle mass	Mono-boson invariant mass, Pt	Z boson invariant mass, Pt	τ invariant mass, Pt
	MET kinematics	Di-boson invariant mass, Pt	H invariant mass, Pt	τ branching fraction
				Final state lepton kinematics (leptonic channel)
				Kinematics with Fastjet clustering (hadronic channel)
SIM-lv	Total energy deposit			Energy deposit with Fastjet clustering
	MET kinematics			
RECO- lv	S, C, DR energy			S, C energy with Fastjet clustering

(Semi-)Fast Simulation

- Full GEANT4 simulation of optical photon tracking explodes CPU cost: O(h)/evt
 - Developing fast simulation for optical photon tracking (7th LoI): O(few mins)/ evt

Čerenkov

Important for a longitudinally unsegmented calorimeter

- 2000mm Wedge geometry EM energy resolution is measured with 5 different energy electron beams.
- Stochastic terms of energy resolutions are similar.

More details: S.H. Ko's talk in FCC workshop (link)

ML-based Application

ML will be used widely in dual-readout calorimeter R&D

More details: Y.J. Lee's talk in CEPC workshop (link)

Tau Reconstruction

- Goal: build a baseline reconstruction algorithm for the tau for both leptonic and hadronic decays
 - Discriminant identification from major backgrounds such as quark or gluon jets, isolated electrons or muons

Will apply deep ML technique such as multi class DNN for efficient

identification

H→Zγ Study

 Goal: reconstruct the Higgs and Z bosons under the process of H→Zy in hadronic channel

 Excellent physics case to study the response of the DRC for both EM and hadronic particles

Multi-jet reconstruction & identification can be also studied

Multi-jet Reconstruction

Goals

- Reconstruct and identify multi-jet candidates from ZH, ttbar, diboson processes
- Assess the impact of high-quality jet energy resolution from DRC with ML technique
- Vary jet energy resolution and study the impact

Computing Facilities

- Need huge resources for CPU and storage to perform full GEANT4 simulation
 - Due to full optical photon simulation for scintillation and Cerenkov fibers
- Current available resources: maximum 700 CPUs are available for our study!
 - KISTI: 150 cores under condor configuration

- Additional 150 cores will be provided at Fall
- KNU: 100-200 cores supported by supercomputing center

UoS: 100-200 cores supported by supercomputing center

SNU: ~150 cores available

Summary

- Dual-Readout Calorimeter R&D project for future e+e- collider in Korea is very active
 - 4x4 prototype detectors for next 5 years
 - Various simulation studies for performance and ML applications are on-going with huge computing facilities
- Various Snowmass21 studies are very active
 - Totally seven Lols have been submitted with new domestic and US collaborators
 - Groups are formed with new domestic collaborators from ALICE, BELLE(II), and CMS members in Korea
- All members and colleagues are very young group (students, young postdocs, faculties)!
 - Very promising future of Korea HEP group

Pictures from our brilliant students... and many more people!

Doyoung Kim

Yun Eo

Kyuyoung Hwang

Sanghyun Ko

Minsoo Kim

20

Back Up