Advanced Optical Instrumentation for Ultracompact, Radiation Hard EM Calorimetry

A. Heering, Yu. Musienko², R. Ruchti,¹ and M. Wayne, University of Notre Dame
B. Cox, R. Hirosky, A. Ledovskoy and C. Neu, University of Virginia
C. Hu, L. Zhang and R-Y. Zhu, California Institute of Technology
U. Akgun³ and Y. Onel, University of Iowa
(¹Contact Person – <u>rruchti@nd.edu</u>)
(²also at the Institute for Nuclear Research RAS, Moscow, Russia)
(³also at Coe College)

Topics in this presentation:

- The FCC calorimetry environment (next two slides) taken from: M. Aleksa, et al, <u>Calorimeters for the FCC-hh</u>, CERN-FCC-PHYS-2019-0003, 23 December 2019.
- The R&D interests of this LOI group, in pursuit of potential EM calorimetry and other options relevant to the FCC-hh environment.

100	R_{min}	Rmax	z coverage	η coverage	Dose	1 MeV n _{eq} fluence
Unit	m	m	m	INTER STATES	MGy	$\times 10^{15} {\rm cm}^{-2}$
EMB	1.75	2.75	z < 5	$ \eta < 1.67$	0.1	5
EMEC	0.82-0.96	2.7	5.3 < z < 6.05	$1.48 < \eta < 2.50$	1	30
EMF	0.062-0.065	3.6	16.5 < z < 17.15	$2.26 < \eta < 6.0$	5000	5000
HB	2.85	4.89	z < 4.6	$ \eta < 1.26$	0.006	0.3
HEB	2.85	4.59	4.5 < z < 8.3	$0.94 < \eta < 1.81$	0.008	0.3
HEC	0.96-1.32	2.7	6.05 < z < 8.3	$1.59 < \eta < 2.50$	1	20
HF	0.065-0.077	3.6	17.15 < z < 19.5	$2.29 < \eta < 6.0$	5000	5000

From M. Aleksa, et al, op cit

Table 1: Dimensions of the envelopes for the calorimeter sub-systems (including some space for services) and the maximum radiation load at inner radii (total ionising dose is estimated for 30 ab^{-1}). The abbreviations used in the first column radiation reaction in the text.

Figure 4: Dependence of the electron shower containment on the calorimeter depth expressed in the radiation lengths. The horizontal lines correspond to the shower containment of 95%, 99% and 100% respectively.

From M. Aleksa, et al, op cit

EM Calorimetry

Desirable Features

- Very Compact Dimensions
- Excellent energy resolution
- High efficiency
- Fast response
- Triggerability
- Good shower position

Challenges

- Radiation Environment
 - Ionization dose
 - Proton fluence
 - Neutron fluence
- Transverse Uniformity
- Longitudinal Uniformity
- Event pileup

EM Calorimetry Approach

- Objectives
 - Energy Resolution: $\sigma_{\rm E}/{\rm E}$ = 10%/ $\sqrt{\rm E}$ \oplus 0.3/E \oplus 0.7% up to $|\eta|$ < 4.
 - Fast response.
 - Good performance under FCC-hh operating conditions
- Technique Sampling Calorimetry
 - 1. Use of dense materials to minimize transverse size and depth
 - Maintaining the Molière Radius as small as possible
 - Modular material with depth ~ 30 X_{o} but ~ 1 λ
 - 2. Use of radiation resistant materials and elements
 - Active elements including crystal/ceramic scintillators and waveshifters
 - Optical transfer elements
 - Geiger mode pixelated photosensors
 - 3. Use of optical techniques for fast signal collection
 - Keeping optical paths as short as possible

A W/LYSO:Ce optical EM calorimetry module

29 Layers LYSO:Ce (1.5mm thickness) 28 Layers W (2.5mm thickness)

Dimensions 14mm x 14mm x 114mm Depth 25 X_o and < 1 λ

The left hand end points in the direction of the IP of the experiment.

A sampling EM Calorimetry module considered for HL-LHC operation.

LYSO:Ce comparison with PbWO₄

	W/LYSO(Ce)	PbWO ₄
Length (mm)	114	220
Transverse size (mm)	14	28.6
Average Molière Radius (mm)	13.7	21
Average Radiation Length X _o (mm)	5.1	8.9
Crystal Light Yield (relative to Nal = 100)	85	0.3
Emission Wavelength	420	425
Decay time (ns)	40	25
Light Output (p.e./MeV)	6-8	2
Temp Dependence (%/C)	-0.2	-2.2

Scintillation materials under investigation...

- 1. Inorganic scintillation crystals and ceramics are the preferred approach because of material density and light efficiency.
 - LYSO, LuAG, GGAG, GYAG, GLuAG...
 - Ce 3+, Pr 3+ doping and also Ca co-doping.
 - Rad hardness of LYSO studied up to 300Mrad ionization dose and neutrons up to $9 \times 10^{15} n_{eq}/cm^2$ and protons up to $8 \times 10^{15} p/cm^2$.
 - Currently LYSO + SiPM are the key elements of the CMS BTL.
- 2. Some novel scintillating ceramics such as LuAG:Ce have a better radiation hardness than LYSO.
- Variously other options such as glass plates with CsPbX₃ (where X = Cl, Br, I or Cl/Br or Br/I) quantum dots with tunable wavelengths.

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X _o (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ª (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 <0.6	600 <0.6	<1	1.5	4	148 6	40	820 50	191 25	800 80	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

December 8, 2019

Presentation by Ren-Yuan Zhu in the 2019 CPAD Workshop at Wisconsin University, Madison, WI

Wavelength shifters and optical transmission elements under investigation...

- If photosensors cannot be positioned proximately to the scintillator, efficient and fast waveshifting of the scintillation light and light transfer to remotely placed photosensors is needed.
- WLS materials specialized to different scintillators
 - To shift 420-425nm to 490-500nm
 - WLS dyes DSB1 and DSF1
 - Fast decay time and high efficiency
 - To shift 350-380nm to 530-560nm
 - WLS dyes based on hydroxyflavones
 - Rapid decay time, good efficiency and very long path length light transmission
 - To shift 520nm to longer wavelengths
 - WLS dyes under study including quantum dots
- Optical transmission elements
 - Capillaries sealed and liquid WLS filled thick-walled quartz structures
 - Studied to 250Mrad ionization dose and up to 10¹⁵ p/cm².
 - Solid fiber materials, including quartz
 - Novel optical transmission elements such as photonic fibers

Photosensor development

- SiPM Technology
 - Pixelated Geiger-mode devices with high photo efficiency across a broad spectral range.
 - Particularly effective for longer wavelength light detection.
 - Already impactful for light detection of:
 - CMS BTL LYSO emission (420nm)
 - CMS HCAL Y11 emission (500nm)
 - In our R&D:
 - DSB1 emission (490nm)
 - LuAG:Ce (520nm)
 - Hydroxyflavone emissions (530-560nm)
 - Intention is to exploit and further the development of localized cooling of the SiPM to reduce noise and extend performance lifetime
 - Continue the development of small pixel devices (5-7 μ m) for efficiency and response time.

Photosensor development

- Larger Band-gap Technologies
 - Hold promise for operation in very high radiation environments, but it is still rather early days in this R&D in spite of several device versions produced.
 - GaInP pixelated devices have been fabricated so significant progress there.
 - Individual photon counting seen, similar to SiPM.
 - Device optimization needed to reduce surface currents seen in the latest version.
 - Challenge here is the lack (currently) of a broad commercial market to help drive development. Needs an interested and engaged commercial fabrication house to proceed more effectively.

Testing

- Beam tests of modular structures
 - Components
 - Individual modules
 - Modular arrays
- Irradiations of device elements and components
 - Scintillators
 - Waveshifting elements
 - Photosensors

A 4x4 array of W/LYSO:Ce with DSB1 WLS Capillaries

Beam Test Caltech, Iowa Notre Dame Virginia

Energy Resolution of the compact 4x4 array of W/LYSO modules.

Measured 4x4 energy compared to th e CERN H4 beam energy for 100 GeV electrons. Energy resolution vs electron beam energy. CERN H4.

R. Ruchti, EF01 & EF02: Instrumenation Requirements,

19.Nov.20

Summary

- R&D to develop highly efficient, compact and rad hard EM calorimetry elements.
- Applications are broad.
 - Hadronic calorimetry
 - Forward calorimetry
 - Scintillation detection over compact and larger areas
 - Timing applications
- Applications to other research fields.
- <u>Acknowledgement and thanks</u>: Work supported by the DOE/OHEP Instrumentation Research program and the NSF Division of Physics