MAP Aug. 26, 2011

Muon Collider 6D Cooling
Model Magnets

M. Tartaglia
Technical Division, Magnet Systems Dept.
Fermilab

M. Tartaglia 1



hccejg,

o G Interesting Magnets in Muon Colliders %}}(_’;

. 2

'D-'“Gg ra™

|_
o
LN
O
o
< > = : : :
g w = Very High Field Solenoids
cc 5
2158 & =
, |88 3
= O S| © o = =
= §E 9|85 35 g i
°s 58 E|Sz ¢ o S
— a () © ] ak} ]
L — | [ - o =
";Er_,E Sw S oF 3 T =
e .2 = i n !
£z - E = Colliding Ring/IR
s i M-agnets 10T,
Meutring wide aperture/
Factory .
Eront End open midplane

}
Mot to scale \

Wide aperture 20T solenoids

HCC solenoid ringsupto 20 T
(one of many options-most
challenging magnet-wise)
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The helical solenoid (HS) concept (FNAL/Muons Inc.) :
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Helical Cooling Channel o
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* Coils follow the helical beam orbit generating solenoidal, helical dipole and

helical quadrupole fields
* Multi-section HCC

Would require 160 meters of magnets

Wide range of fields, helical periods, apertures
» Room for RF system
Field tuning is more complicated at high fields

»> NbTi, Nb3Sn/Nb3Al and HTS in final stage (progression of models)

Early Specs, ca. 2006-K. Yonehara, S. Kahn, R. Johnson et al.
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Parameter section

1st 2nd 3rd 4th
Total length m 50 40 30 40
Period mm 1000 800 600 400
Orbit radius mm 159 127 95 64
Solenoidal tield B, T -695 | -869  -11.6 -173
Helical dipole B, T 162 203 | 271 406
Helical gradient ¢ T/m -07  -1.1 2 4.5

M. Tartaglia

3



2t HS Mechanical Concept ;&{
.3 (FNAL)

'b-'“ograf“
" Coils and
Coltar Rings . Two short models AN
Outer Cylinder built and tested ;H?: :\;:179
~ 314862
successfully — R
e
T
B L ss7Ee0n
%I'- 4638408
- « 525E+08

« SF4E+0B

* Hoop Lorentz forces intercepted by
stainless steel rings around the coils

* Transverse Lorentz forces intercepted by
support flanges

* QOuter LHe vessel shell provides
mechanical rigidity to the structure

e The peak stress is ~60 MPa
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? NbTi Model Magnet Design & Documentation T'J((
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» Design, Fabrication, Testing Primary Responsibility
* Program Oversight Mike Lamm
Sasha Zlobin, John Tompkins
* Magnetic Design Vladimir Kashikhin
* Mechanical Design & Fabrication Sasha Makarov

Nikolai Andreev, Miao Yu

* Testing & Analysis Mike Tartaglia
Guram Chlachidze, MTF !
» Documents
» Tiweb.fnal.gov = Magnet Description Documents

 TD-09-011 Test of Four Coil Helical Solenoid Magnet HSM01
« PAC’09 Four Coil Superconducting Helical Solenoid For
MANX
 TD-11-012 HSMO02 Magnet Fabrication and Test Summary
MT-22 II\{/IOdelbl NbTi Helical Solenoid Fabrication and Test
esults
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* NbTi Model Magnet Design Features

4 coil prototype model magnets with large aperture
» 1 Two models in planned series: Technology Demonstration

= HSMO02 same design with improvements based on HSM01 experience
» Largest diameter that can be tested in VMTF R&D stand (OD ~ 25”)

“Hard Way Bend” winding of NbTi cable (LHC quad — not optimized)

» Smooth transition without splices between 4 offset coils

» “keystoned” cable hard to wind with high packing factor
= HSMO2 cable flattened, improved winding
» Embedded quench protection strip heaters
Epoxy-impregnated coil package
> Stainless steel rings control hoop Lorentz stresses
= Sharp edges require care with insulation scheme
» but provide no pre-stress on coils to constrain conductor motion
= Next step in the progression will use Aluminum outer rings
No Iron Flux Return
> Large stray field, forces on SC leads
= SC Lead motion in HSMO01 led to some quenches, ground fault
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HSMO1, HSMO2

NbTi Model Magnet Design
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HSMO1, HSMO2 ;%(

NbTi Model Magnet Tests
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|  Main Test Goals:
= v’ Measure Mech. Stresses
v Quench Performance
vs Temperature
vs Ramp Rate
v’ Protection Heater Effic.
v Magnetic Field Map

« HSMO01 tested in Nov/Dec 2008
TD-09-011, PAC’09
* Ground Insulation issues
* Epoxy voids, packing factor
* SC lead support
* Coordinate System

e HSMO2 tested in Nov/Dec 2010
TD-11-012, MT-22

e 2 thermal cycles
(quench re-training)
* LN, Conduction cooling study
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o HSMO1, HSMO2 }}(
e NbTi Model Mechanical Stress Te
» Detailed HSMO01 mechanical stress analysis made in TD-09-011
 FEM analysis of Cool down (.2-.3%); Lorentz Force <.007%) stresses
* Transverse (radial), Azimuthal, Longitudinal , compensating (T,B) gauges on coils
e Predicted Max On Coils: 13 MPa (T), 10.5 MPa (A), 34.5 MPa (L)
e Predicted Max On Links: 116 (T), 101 (A), 306 (L)
« “Acceptable” for 304 S.S., “designed far beyond required even for Nb3Sn”
 Hard to measure with any confidence
« Imperfect compensation, gauge calibrations? Debonding from surface
* measured stresses were < or ~ consistent with calculated
» HSMO02 has same mechanics
e Instrumented with fewer gauges (4 Azimuthal + 1 comp.)
e Cool down stress analysis not completed —
* inconsistent gauge data (warm/cold) suggests debonding

* Lorentz force stresses were <~0.008%
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gt HSMO1, HSMO2 Test Results

* Quench Studies

¢ Quench Protection

s MIITS calculation (local heat balance), Peak Temperature Rise

* LHC Outer cable (30 0.8mm strand NbTi) max. 11 MIITS; data ~3-4
* Conductor RRR — Copper stabilizer resistance (higher RRR is better)
« HSMO01 ~140-155 (same as LQXB) HSMO02 ~102 (rather low; why?)

“* Magnet Description Document
* Low Inductance ~200 uQ, E .4(16kA)~26 kJ
* Dump Resistor energy extraction
* (t~L/Rpysimagy YMax=IR
« R;HSMO01 =10 mQ, HSM02 = 60 mQ

¢ Protection Strip Heaters

dump)

* Study of inducing quenches (for long magnets)
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** Quench Prediction: at 4.5 K, HSM01~16 kA, HSM02 ~ 15 kA

Peak field is slightly higher on end coils

le, A

ot HSMO1, HSMO2 Test Results
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Magnet Load Line crosses Conductor Critical Current (vs T)
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HSMO01 (HSM02) reached 85% (100%) of I,
Very similar training curves - slightly erratic

(char. of epoxy-impregnated coils)
Little temperature dependence of training rate

(higher Ic, mechanical limitations)
Quenches mostly in end coils for both
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ot HSMO1, HSMO2 Test Results

Quench Performance
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*¢* Quench Locations
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* Generally only know which coil quenched (one voltage segment across each coil)

* There has been no detailed analysis of quench velocity

« HSMO02: Two quenches developed ~ simultaneously in adjacent coils

presumably originating in transition region between coils

fuench Scan Dala
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2t HSMO1, HSMO2 Test Results 7%
* Quench Performance
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**Quench Prediction: at 4.5 K, HSM01~16 kA, HSM02 ~ 15 kA
* Design would allow at least 15 % current operating margin
HSMO02 Ramp Rate Dependence e HSMO02 Quench History
15000
‘ i RO I T e ada
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* Plateau is “remembered” at 4.5 K after reaching

highest current at 3.0 K

« Fast Re-training of HSM02 after 300K T-cycle

Quenches 46-51 Dip at 3K:
Allowed 30 minutes recovery
between quenches

Quench 52: waited 1 hour

* Virtually no ramp rate dependence (both magnets)

to quite high ramp rates (600 A/s) .
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ot HSMO1, HSMO2 Test Results
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Quench Heater Performance

**Quench Protection Heaters
« HSMO1 had S.S. strip heaters on Outer Layer of each Coil
* Three were full length, one 6-inch “spot” heater
* Time did not allow exploration of heater parameters
* only one quench induced, at low heater voltage
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« HSMO2 S.S. strip heaters on mandrel prior to winding of each Coil
* All in parallel, with 4W external resistor ; fixed HFU capacitance
(to increase range of parameters given heater voltage limits)
* Mapped out Time (heater fired to quench detected) vs {I, Vhiu}
* Still needed: calculate heater power

MAP Aug. 26, 2011
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S HSMO1, HSMO2 Test Results }(

* Quench Heater Performance Ad
¢ Conduction Cooling Study
* We do not have the facilities to test indirectly cooled magnets
* Need vacuum vessel for insulation IO o O
« VMTF is not a good vac. Vessel e
* No helium supply to cooling tubes P . N
 Helium vapor-cooled leads for power testing R

* We tried a simple thermal test
* Pump out VMTF helium space; we achieved <0. 1 Torr
* Connect LN2 to cooling tubing
* Measure T vs time on all four coils with 1 RTD/coil +top, bottom
* Not so great: RTD calibrations are sparse at high T (300, 80K)
* No one has had time to model expectations, compare with data

MAP Aug. 26, 2011 M. Tartaglia 16
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* Quench Heater Performance
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¢ Conduction Cooling Study
* We learned one very important Lesson
* Copper tubing wrapped around each coil
* Makes a beautiful 10:1 transformer!
* This is not the right way to design the cooling tube layout

MAP Aug. 26, 2011 M. Tartaglia 17
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“*Magnetic Field Maps: 3D Hall probe scans, vs 3D model prediction

What are the tolerances
On “field quality”
On ring positions ?

SR *kﬁ;? | These will be measured
258 SR Carefully in HSMO02
XN = (better attention to
YN ~ACoil 4/ alighment/survey features,
e K Coil_3-7¢ . ., Coordinate systems)

MAP Aug. 26, 2011 M. Tartaglia 18



Magnetic Field

s Magnetic Field Maps: 3D Hall probe scans

« HSMO01 £10A at 300 K, 2 kA at 4.5 K (in 1.75” warm bore tube)
(warm planned)

« HSM02

S5kA at45 K

* There is no central axis (offset rings)
 Mechanical center is well defined
e Fiducial marks allow probe positioning
 Make comparison to 3D Model

* Cold measurements along a central line
no surprises — Bz/I agrees with warm

* Warm measuments
» central line along Z (solenoid dir.)

* Along

Z at §

R=4cm, 0}

Off-axis:

probe, model}

HSMO02)
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& Relating {magnet,
Coordinate Systems

attention (done in
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Longitudinal Field on axis vs. Calculation
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& HSMOI1, HSMO2 Test Results ;@(
' 3 Magnetic Field rourar

> HSMO02: Still setting up to do warm measurements at +10A
* Conventional Test Stand B tied up with Accelerator Support projects
* New system development, new 3D Senis Hall probe (vs 3 1D probes)
* Minor complication: steel table (mounted high on Al beam)
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* Other models in progress, planned

**HSMO03 — same design but with Aluminum rings for coil pre-stress
“*HSM04 — Nb;Sn design
* Needed for inserts in higher field cooling regions
* Very different technology (small part of larger High Field magnet program)

s Helical solenoids using HTS (BSSCO wire or YBCO tape) conductor

* Also needed for inserts in higher field regions

'b-"t::gra‘i“

* New, very different technology —
» collaboration with Muons, Inc. to design, build, test first model
» First YBCO model has been built and tested —
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