Constraining the EPPS nPDFs with W-bosons at 8.16 TeV pPb

Petja Paakkinen

IGFAE – Universidade de Santiago de Compostela

SnowMass2021 EF07 meeting: EW and nPDF in HIC 23 Nov 2020

LHC is currently the driving force of nPDF analyses **with an allean and the set of the set of the set of the set o** $\frac{1}{6}$ Torce of the *D* $\frac{1}{6}$ analyses $\frac{1}{6}$

Dijets and D^0 s – strong constraints for gluons

We have performed Hessian PDF reweighting studies to see the impact of dijets and $\mathsf{D}^0\mathsf{s}$

- Drastic reduction in EPPS16 gluon uncertainties
- **Support for mid-** x antishadowing and small- x shadowing
- Constraints from dijet and D-meson data mutually consistent!

Work in progress:

- Include these and the CMS 8.16 TeV W bosons into a global analysis
- **Studies in more relaxed parametrization ongoing**
- \blacksquare Unfortunately, cannot show the results yet \odot

More detailed look into the W data

dσ/

 $d\eta_\mu$ [nb]

Cannot be neglected when fitting the nPDFs

No obvious best way to use these data, but we should test different options:

■ Use the absolute cross sections as in nNNPDF2.0, nCTEQ15WZ

- \rightarrow susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
	- \rightarrow cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- **Use forward-to-backward ratios** as in EPPS16
	- \rightarrow more direct cancellation of the proton-PDF uncertainties, lose statistical significance
- Use nuclear modification ratios the current plan for EPPS2x
	- \rightarrow expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton–proton measurement

4 / 14

How to include proton-PDF uncertainties in nPDF reweighting? Work in progress

Construct a total figure-of-merit function of the CT14 and EPPS16 parameters:

$$
\chi_{\text{total}}^2(z_{\text{CT14}}, z_{\text{EPPS16}}) = \chi_{\text{CT14}}^2(z_{\text{CT14}}) + \chi_{\text{EPPS16}}^2(z_{\text{EPPS16}})
$$

$$
+ (y(z_{\text{CT14}}, z_{\text{EPPS16}}) - y^{\text{data}})^T C^{-1} (y(z_{\text{CT14}}, z_{\text{EPPS16}}) - y^{\text{data}})
$$

Take the quadratic–linear approximation:

$$
\chi_{\text{CT14}}^2(z_{\text{CT14}}) = \chi_{\text{CT14,min}}^2 + z_{\text{CT14}}^2, \qquad \chi_{\text{EPPS16}}^2(z_{\text{EPPS16}}) = \chi_{\text{EPPS16,min}}^2 + z_{\text{EPPS16}}^2,
$$

$$
y(z_{\text{CT14}}, z_{\text{EPPS16}}) = y_0 + D_{\text{CT14}} z_{\text{CT14}} + D_{\text{EPPS16}} z_{\text{EPPS16}}
$$

Marginalizing (i.e. integrating out) the CT14 parameters then gives:

$$
\chi_{\text{marginal}}^2(z_{\text{EPPS16}}) = \chi_{\text{CT14,min}}^2 + \chi_{\text{EPPS16,min}}^2 + z_{\text{EPPS16}}^2 + (y_0 + D_{\text{EPPS16}} z_{\text{EPPS16}} - y^{\text{data}})^T (C + S_{\text{CT14}})^{-1} (y_0 + D_{\text{EPPS16}} z_{\text{EPPS16}} - y^{\text{data}}),
$$

where

$$
S_{\mathsf{CT14}} = D_{\mathsf{CT14}} D_{\mathsf{CT14}}^T
$$

c.f. [Abdul Khalek et al., Eur.Phys.J. C79 (2019) 931]

5 / 14

How to set error tolerance in theoretical covariance matrix?

Work in progress

The problem is in normalizing with the error tolerance $\Delta\chi^2$: effectively, this leads to setting $\Delta\chi^2\rightarrow 1$, which is *not* consistent with the CT14 error analysis

2

Using instead the CT14 (co)variances directly

The simple derivation above gives:

 $\sqrt{ }$ k

 $\Delta\chi^2$

$$
S_{ij}^{\rm CT14}=\sum_k \frac{y_i[S^+_k]-y_i[S^-_k]}{2} \frac{y_j[S^+_k]-y_j[S^-_k]}{2}
$$

 $y_i[S_k^+] - y_i[S_k^-]$ 2

is consistent with the CT14 definition of $\Delta\chi^2=100$

Obviously, the results will depend heavily on the chosen error tolerance

Note: It is the strong *positive* correlations which make the uncertainty reduction with ratios possible

Reweighting results with absolute cross sections

Work in progress

Reweighting results with absolute cross sections

Work in progress

Reweighting results with absolute cross sections

Work in progress

Why is it so hard to constrain the flavour separation?

There is a subtle interplay with isospin

For example, we can write

$$
\begin{split} f_{u\mathrm{V}}^{A} &= \left(R_{u\mathrm{V}}^{A} + d\mathrm{V} - \frac{A - 2Z}{A}R_{u\mathrm{V}}^{A} - d\mathrm{V}\right)\frac{f_{u\mathrm{V}}^{p} + f_{d\mathrm{V}}^{p}}{2} \\ f_{d\mathrm{V}}^{A} &= \left(R_{u\mathrm{V}}^{A} + \frac{A - 2Z}{A}R_{u\mathrm{V}}^{A} - d\mathrm{V}\right)\frac{f_{u\mathrm{V}}^{p} + f_{d\mathrm{V}}^{p}}{2} \end{split}
$$

where

$$
R_{uv}^{A}{}_{+}d_{v} = \frac{f_{uv}^{p/A} + f_{dv}^{p/A}}{f_{uv}^{p} + f_{dv}^{p}}
$$

$$
R_{uv}^{A}{}_{-}d_{v} = \frac{f_{uv}^{p/A} - f_{dv}^{p/A}}{f_{uv}^{p} + f_{dv}^{p}}
$$

$$
A - 2Z
$$

and neutron excess $\stackrel{21}{\rightharpoonup}$ A $\tilde{=} \approx 0.2$ for Pb

 \rightarrow Need high-precision data on non-isoscalar nuclei to constrain the difference

Future prospects: DY at 8.16 TeV

CMS 8.16 TeV DY measurement extends to lower scales than what is accessible with the Ws

- Do we get a better handle on the sea quarks at the parametrization scale?
- **DGLAP** evolution effects are large already between the parametrization scale and 15 to 60 GeV, which can again hinder the constraints for sea quarks

As with the Ws, proton-PDF uncertainties can become as large as the data uncertainties, particularly in the high-mass region

- Need to find a way to mitigate these, or take them into account in the fit
- **Do** we get better results with R_{FB} , R_{pPb} ?

Future prospects: Forward photons with FoCal

Isolated photons at forward rapidities are a good probe of the nuclear small- x gluons

- \blacksquare Isolation cut reduces the fragmentation component
	- enhanced small-x sensitivity [Helenius et al., JHEP 09 (2014) 138]
- Test for the possible onset of non-linear QCD effects
- Complementary to the forward D^0 s and DY [cf. CERN Yellow Rep.Monogr. 7 (2019), pp. 1312-1313]

Future prospects: Forward photons with FoCal (versus D^0 constraints)

Constraints from D^0 s already more stringent than what we can expect from FoCal Still, there is important complementarity between forward photons and $D^0\mathsf{s}$

- \blacksquare "Cleaner" probe of the nPDFs in the small- p_T region, where theoretical uncertainties in D^0 production can become significant
	- \blacktriangleright The good π^0 reconstruction in FoCal becomes important
- Test for the factorization & process independence (universality) of nPDFs

Some concluding remarks

- LHC dijet, D-meson and W-boson data are all capable of setting constraints on gluon nPDF
	- \blacktriangleright New global analysis on its way
- With increasingly precise data, uncertainties from free-proton PDFs become important
	- ▶ PDF reweighting offers an easy and effective way to test different ways to cancel these uncertainties or how to eventually account for them in a global analysis
	- \triangleright PDF error tolerance needs to be treated correctly (not totally unambiguous)
- **Flavour separation remains difficult to constrain**
	- \triangleright Constraints from Ws currently hindered by free-proton uncertainties, can improve in the future
	- \triangleright Some additional constraints could be expected from the proposed COMPASS $++/$ AMBER pion–nucleus DY experiment
	- \triangleright CC DIS at EIC/LHeC might help?
- Interesting future prospects with DY and isolated photons

Backup

Short intro to EPPS16

[Eur.Phys.J. C77 (2017) 163]

Define nPDFs in terms of

 $f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$ bound-proton PDF nuclear modification free-proton PDF

- Parametrize the x and A dependence of $R_i^A(x,Q_0^2)$ at $Q_0^2 = m_{\text{charm}}^2$
- **PDFs of the full nucleus are then constructed with**

$$
f_i^A(x, Q^2) = Z f_i^{p/A}(x, Q^2) + N f_i^{n/A}(x, Q^2),
$$

where the neutron content is obtained via isospin symmetry

- Allow full flavour separation and include heavy-quark mass effects with a general-mass variable flavour number scheme (GM-VFNS)
- **Most extensive data set to date, with** ν **A DIS,** π **A DY, LHC pPb dijets and EW bosons**

PDF reweighting: different approximations [Eur.Phys.J. C79 (2019) 511]

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

Cancellation of hadronization effects sli

Hadronization uncertainty

Parton jets have higher cross section for $R = 0.3$ jets with same kinematic selections compared to hadron jets

Parton jets are harder fragmenting

After self normalization effect of hadronization is negligible

CMS dijets at pp [Eur.Phys.J. C79 (2019) 511]

- Predicted NLO distributions somewhat wider than the measured spectra
- High- $p_{\rm T}^{\rm ave}$ midrapidity robust against scale variations and LO-to-NLO effects
	- \rightarrow can expect NNLO corrections to be small in this region
	- \rightarrow observed discrepancy seems to be a PDF related issue
- Refitting might be needed to improve agreement with data
	- \rightarrow study the impact with the reweighting method

CMS dijets at pPb [Eur.Phys.J. C79 (2019) 511]

- pPb data deviates from NLO calculations almost the same way as the pp data
	- \rightarrow had we not seen the same deviations in pp, we might have interpreted this as a fault in our nuclear PDFs
- **Compared to pp case we have additional suppression in data compared to theory at forward** rapidities
	- \rightarrow implication of deeper gluon shadowing

CMS dijets at pPb – impact of CT14 reweighting [Eur.Phys.J. C79 (2019) 511]

- Modifications needed in CT14 to describe pp data have large impact on pPb predictions
	- \rightarrow it is imperative to understand the pp baseline before making far-reaching conclusions from pPb data
- Using these data directly in nuclear PDF analysis with CT14 proton PDFs would lead to
	- \triangleright overestimating nuclear effects
	- - \Box large scale-choice bias \rightarrow Consider nuclear modification factor instead

CMS dijet $R_{\text{pPb}}^{\text{norm}}$ – EPPS16 reweighted [Eur.Phys.J. C79 (2019) 511]

- **Drastic reduction in EPPS16 uncertainties!**
- Downward pull in the forward region
- The most forward data points lie systematically below the reweighted uncertainty band – could be due to
	- inflexibility in EPPS16 parametrization at small x
	- \triangleright systematics of the measurement would be helpful to have correlations of uncertainties available to us

Constructing fast-calculation grids for the next EPPS analysis

mere sum

D-mesons at 5.02 TeV – differences in theoretical descriptions

- **■** The matrix-element fitting method [Lansberg & Shao, EPJ C77 (2017) 1], uses $2\!\rightarrow\!2$ kinematics p roducing a narrow distribution in x
- region and to the theoretical models discussed in the text. The uncertainty is the quadratic sum of \blacksquare The SACOT- $m_{\rm T}$ scheme [Helenius & Paukkunen, JHEP 1805 (2018) 196] of GM-VFNS gives a much wider x-distribution due to taking into account the gluon-to-HQ fragmentation
	- Still, the data can probe nPDFs down to $x \sim 10^{-5}$

Heavy-flavour production mass schemes

FFNS

In fixed flavour number scheme, valid at small p_T , heavy quarks are produced only at the matrix element level

Contains $\log(p_T/m)$ and m/p_T terms

ZM-VFNS

In zero-mass variable flavour number scheme, valid at large p_T , heavy quarks are treated as massless particles produced also in ISR/FSR

Resums $\log(p_T/m)$ but ignores m/p_T terms

GM-VFNS

A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all p_T

subtraction term

Resums $\log(p_{\rm T}/m)$ and includes $m/p_{\rm T}$ terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation $-$ large contribution to the cross section!

- **Large reduction in small-**x uncertainties, probed down to $x \sim 10^{-5}$
- Support for stronger (weaker) shadowing than in the EPPS16 (nCTEQ15) central set
- EPPS16 and nCTEQ15 brought to a closer mutual agreement
- Striking similarity with the results with dijets \rightarrow Supports the validity of collinear factorization in pPb and the universality of nPDFs

EPPS16 reweighted with LHCb D-meson R_{pPb} at 5.02 TeV [JHEP 05 (2020) 037]

- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed

nCTEQ15 reweighted with LHCb D-meson R_{nPb} at 5.02 TeV [JHEP 05 (2020) 037]

- Uncertainties smaller to begin with in the forward direction (less flexible small-x parametrization) while larger in backward – almost identical results
- Data well reproduced

Future prospects: D-mesons at 8.16 TeV – do we have tension?

QM2019 LHCb summary talk:

"Tension between data and nPDFs predictions. Additional effects required."

 \rightarrow Theoretical description matters, HELAC underestimates the nPDF uncertainties

The slope of the 8.16 TeV data still differs from that in EPPS16

- \rightarrow might hint a preference for a slightly different parametric form
- \rightarrow can we explain the different behaviour in 8.16 TeV vs. 5.02 TeV data?

Constraining the valence flavour separation with pion–nucleus DY Work in progress

To constrain the flavour separation, we can use neutrino DIS [Paukkunen & Salgado, JHEP 07 (2010) 032] or pion–nucleus Drell–Yan [Phys.Lett.B 768 (2017) 7-11]

To cancel pion-PDF uncertainties, we can use either ratios of the cross sections directly,

$$
\frac{\frac{1}{A_1} d\sigma^{\pi^- + A_1}/dx_N}{\frac{1}{A_2} d\sigma^{\pi^- + A_2}/dx_N} \approx \frac{4u^{A_1} + d^{A_1}}{4u^{A_2} + d^{A_2}} \rightarrow
$$
 probes *mostly u* valence

$$
\frac{d\sigma^{\pi^+ + A}/dx_N}{d\sigma^{\pi^- + A}/dx_N} \approx \frac{4\bar{u}^A + d^A}{4u^A + d^A} \rightarrow
$$
 probes *mostly u/d* valence ratio, but more sensitive to sea quarks

or through the linear combinations

$$
\Sigma_{\text{val}}^A = -\sigma^{\pi^+ + A} + \sigma^{\pi^- + A}, \qquad \Sigma_{\text{sea}}^A = 4\sigma^{\pi^+ + A} - \sigma^{\pi^- + A},
$$

which give

$$
\frac{\frac{1}{A_1}d\Sigma_{\text{val}}^{A_1}/dx_N}{\frac{1}{A_2}d\Sigma_{\text{val}}^{A_2}/dx_N} \approx \frac{4u_V^{A_1} - d_V^{A_1}}{4u_V^{A_2} - d_V^{A_2}} \rightarrow \text{probes only valence quarks}
$$
\n
$$
\frac{\frac{1}{A_1}d\Sigma_{\text{sea}}^{A_1}/dx_N}{\frac{1}{A_1}d\Sigma_{\text{sea}}^{A_1}/dx_N} \approx \frac{3(4\bar{u}^{A_1} + \bar{d}^{A_1}) + 4(d_V^{A_1} - u_V^{A_1})}{3(4\bar{u}^{A_2} + \bar{d}^{A_2}) + 4(d_V^{A_2} - u_V^{A_2})} \rightarrow \text{probes sea quarks} + \text{valence-quark difference}
$$

Pion–nucleus DY at COMPASS++/AMBER Work in progress

For

$$
\frac{\frac{1}{A_1} d\sigma^{\pi^-+A_1}/dx_N}{\frac{1}{A_2} d\sigma^{\pi^-+A_2}/dx_N}, \quad \frac{\frac{1}{A_1} d\Sigma_{\rm val}^{A_1}/dx_N}{\frac{1}{A_2} d\Sigma_{\rm val}^{A_2}/dx_N}
$$

the pion-PDF cancellation is extremely good straight out of the box, but for

$$
\frac{\mathrm{d}\sigma^{\pi^++A}/\mathrm{d}x_\mathrm{N}}{\mathrm{d}\sigma^{\pi^-+A}/\mathrm{d}x_\mathrm{N}},\quad \frac{\frac{1}{A_1}\mathrm{d}\Sigma^{A_1}_{\mathrm{sea}}/\mathrm{d}x_\mathrm{N}}{\frac{1}{A_2}\mathrm{d}\Sigma^{A_2}_{\mathrm{sea}}/\mathrm{d}x_\mathrm{N}}
$$

it is better to use additional x_{π} cut

NLO predictions compared here with the expected statistics from 213 days $(\pi^+$ beam) + 67 days $(\pi^-$ beam) run at the COMPASS++/AMBER facility

COMPASS++/AMBER projections provided by Vincent Andrieux (University of Illinois)

Pion–nucleus DY at COMPASS++/AMBER Work in progress

Reweighting EPPS16 with projected data shows that we can expect some, but not very strong, additional constraints on flavour separation

However:

- The flavour-separation constraints in EPPS16 come mostly from ν + Pb DIS, for lighter nuclei the dependence is strongly influenced by the used parametrization
- Still an important check for the universality of the nPDFs and test for the existence of CNM energy loss [Arleo et al., JHEP 01 (2019) 129]

TODO:

■ Check the expected impact with $\Sigma_{\rm{se}}^{\rm{W}}$ $_{\rm sea}^{\rm W}/\Sigma$ $\mathbf C$ sea

