EW and nPDF in HIC: Experimental review

Andre Ståhl T.W. Bonner Laboratory, Rice University

Snowmass meeting, EF07: Electroweak and nPDF in HIC

Introduction

• Variety of probes can constrain nPDFs:

- W and Z bosons.
- Low mass Drell-Yan and prompt photons.
- Top quarks.
- Dijet.
- Heavy-Flavour in pPb.
- Quarkonia and dijets in UPC.
- Among others.

- Parton PDFs modified by nuclear medium.
- Robust understanding of nPDF effects are crucial to interpret the **heavy-ion measurements**.
- Deviations from linear DGLAP evolution (i.e. **saturation**) should be enhanced in nuclei.

Snowmass meeting: EW & nPDF in HIC

• EW boson and top quark measurements in HIC

- ➤ W boson
- Z boson and Drell-Yan
- > Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Outline

• EW boson and top quark measurements in HIC

➤ W boson

- Z boson and Drell-Yan
- Prompt photons
- ➤ Top quarks

• Future HIC facilities and nPDF prospects:

> CERN:

- > LHC upgrades
- > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Outline

Snowmass meeting: EW & nPDF in HIC

ALICE

- Measurements compatible with CTI0 and CTI0+EPS09 calculations.

Snowmass meeting: EW & nPDF in HIC

• Statistical precision of pPb data at 5.02 TeV limits sensitivity to nuclear PDF effects.

- - Data provides clear evidence of nuclear modification of PDFs in pPb.

• CMS results strongly deviate (>5 σ) from CT14 PDF calculations in forward region. • Experimental uncertainties are significantly smaller than nPDF uncertainties. • ALICE preliminary W⁺ results also deviate from CT14 by 2.7σ at forward rapidity.

Snowmass meeting: EW & nPDF in HIC

3

W boson in PbPb ATLAS @ 5.02 TeV

• Good agreement with CTI4 while nPDF models underestimate the data by 10-20%.

W boson in PbPb

ATLAS @ 5.02 TeV

E.P.J. C 79 (2019) no.11, 935

- Centrality dependence not fully described by free-proton PDF.
- Slight increasing trend for W^- towards peripheral collisions.

Good agreement with CTI4 while nPDF models underestimate the data by 10-20%.

W boson in PbPb

ATLAS @ 5.02 TeV

E.P.J. C 79 (2019) no.11, 935

- Centrality dependence not fully described by free-proton PDF.
- Slight increasing trend for W^- towards peripheral collisions.
- First PbPb preliminary measurement of W at forward rapidity.
 - ALICE planning to combine 2015 y 2018 data.

Snowmass meeting: EW & nPDF in HIC

arXiv:2008.07809v1

Good agreement with CTI4 while nPDF models underestimate the data by 10-20%.

• EW boson and top quark measurements in HIC

- ➤ W boson
- Z boson and Drell-Yan
- Prompt photons
- ➤ Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Outline

Snowmass meeting: EW & nPDF in HIC

23/11/2020

IALICE

Z boson in pPb

- Results agree well with the (n)PDF calculations within current uncertainties.

• New results from ALICE and CMS at 8.16 TeV are also compatible with all PDF models.

Drell-Yan in pA

• PHENIX preliminary pAu results show hint of enhancement at pT > 2 GeV in p-going side.

Snowmass meeting: EW & nPDF in HIC

6

Drell-Yan in pA

• PHENIX preliminary pAu results show hint of enhancement at pT > 2 GeV in p-going side. CMS preliminary pPb results are consistent with both CT14 and EPPS16 calculations.

6

C M **PAS-HIN-18-003**

Z boson in PbPb

- New results from CMS, ALICE (2015+2018) and ATLAS in 2020.
- CMS cross-section measurements agree with PDF and nPDF calculations.

• ALICE R_{AA} data deviates from CT14 (int. yield ~ 3.4σ), and agrees with EPPS16 calculations.

ATLAS R_{AA} results are compatible with CT14 while slightly underestimated by nPDF models.

ALICE @ 5.02 TeV

• ALICE new Z boson results slightly favours nuclear PDFs over CT14.

Snowmass meeting: EW & nPDF in HIC

8

EW boson centrality dependence

- ALICE new Z boson results slightly favours nuclear PDFs over CT14.
- not described by HG-PYTHIA model calculations \rightarrow favours shadowing of σ_{NN} .

• Z and W boson trend vs centrality shows slight enhancement towards peripheral collisions,

8

EW boson centrality dependence

- ALICE new Z boson results slightly favours nuclear PDFs over CT14.
- Z and W boson trend vs centrality shows slight enhancement towards peripheral collisions, not described by HG-PYTHIA model calculations \rightarrow favours shadowing of σ_{NN} .
- CMS Z boson data shows 'suppression' in peripheral events consistent with HG-Pythia.
 - Clear tension between ATLAS and CMS Z boson yields in peripheral PbPb.

Snowmass meeting: EW & nPDF in HIC

• EW boson and top quark measurements in HIC

- ➤ W boson
- Z boson and Drell-Yan
- > Prompt photons
- ➤ Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Outline

Snowmass meeting: EW & nPDF in HIC

23/11/2020

ALICE

Prompt photons in pPb

• Cross-section measurements larger than nPDF NLO calculations by ~20% at low E_T .

Snowmass meeting: EW & nPDF in HIC

- However, R_{pPb} and FB ratio well described by EPPS16 and CT14 calculations.

• Cross-section measurements larger than nPDF NLO calculations by ~20% at low E_T .

Snowmass meeting: EW & nPDF in HIC

- However, R_{PPb} and FB ratio well described by EPPS16 and CT14 calculations.
- nCTEQ15 slightly under-predicts FB ratio at low E_T.

• Cross-section measurements larger than nPDF NLO calculations by ~20% at low E_T .

Snowmass meeting: EW & nPDF in HIC

Direct photons in PbPb

• Excess observed by ALICE at low p_T compared to pQCD calculations.

ALICE @ 2.76 TeV

Prompt photons in PbPb

ALICE @ 2.76 TeV

- Excess observed by ALICE at low p_T compared to pQCD calculations.
- Good agreement between ATLAS data and (n)PDF calculations across all bins.

ATLAS @ 2.76 TeV

Snowmass meeting: EW & nPDF in HIC

- Excess observed by ALICE at low p_T compared to pQCD calculations.
- Good agreement between ATLAS high p_T data and (n)PDF calculations.
- CMS R_{AA} at high E_T compatible with unity: photons not significantly modified.

Prompt photons in PbPb

Snowmass meeting: EW & nPDF in HIC

Direct photons at RHIC

PHENIX @ 200 GeV

• Low p_T photon yield shows scaling with $(dN_{ch}/d\eta)^{1.25}$ regardless of collision system or energy.

Direct photons at RHIC RHIC @ 200 GeV

Snowmass meeting: EW & nPDF in HIC

• Low p_T photon yield shows scaling with $(dN_{ch}/d\eta)^{1.25}$ regardless of collision system or energy. • STAR results also show scaling but at much lower magnitude \rightarrow STAR / PHENIX tension. • Intermediate p_T results also show scaling for same collision energy, in agreement with pQCD.

• EW boson and top quark measurements in HIC

- ➤ W boson
- Z boson and Drell-Yan
- Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Snowmass meeting: EW & nPDF in HIC

Outline

ALICE

- First measurements of top quarks in HIC.
- Current results in agreement with both PDF and nPDF models.
- Large uncertainties due to lack of statistics.
 - Will be significantly improved with future high luminosity LHC and FCC.

Snowmass meeting: EW & nPDF in HIC

Top quarks in HI

CMS PbPb @ **5.02 TeV**

CMS

• EW boson and top quark measurements in HIC

- > W boson
- > Z boson and Drell-Yan
- > Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- > China:
 - Electron Ion Collider in China
- > **USA**:
 - > RHIC upgrades
 - Electron Ion Collider in US

SPHENIX

HL-LHC PROJECT

Outline

Snowmass meeting: EW & nPDF in HIC

• EW boson and top quark measurements in HIC

- > W boson
- > Z boson and Drell-Yan
- > Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- > CERN:
 - > LHC upgrades
 - > Future Circular Collider
- ➤ China:
 - Electron Ion Collider in China
- > USA:
 - RHIC upgrades
 - Electron Ion Collider in US

SPHENIX

HL-LHC PROJECT

Outline

Snowmass meeting: EW & nPDF in HIC

A Fixed Target Experiment (AFTER) at LHC: arXiv:1807.00603

- Build joint programme between LHCb and ALICE collaborations.
- LHCb currently use gas targets injected in LHC beam pipe through SMOG.
- Goal to collide p (Pb) beams against polarised gas targets at 115 (72) GeV.

Snowmass meeting: EW & nPDF in HIC

13

A Fixed Target Experiment (AFTER) at LHC: <u>arXiv:1807.00603</u>

- Build joint programme between LHCb and ALICE collaborations.
- LHCb currently use gas targets injected in LHC beam pipe through SMOG.
- Goal to collide p (Pb) beams against polarised gas targets at 115 (72) GeV.
- High Luminosity LHC (2028+): CERN-2017-007-M
 - Major LHC upgrade to increase pp luminosity by ~x10 beyond design value.
 - Major detector upgrades: ALICE/LHCb in LS2 and CMS/ATLAS in LS3.
 - Increase of 2-3x HI data in first HL-LHC run (R4) compared to Run 1+2.
 - Proposal to increase LHC beam energy (pp 27 TeV, 17 pPb, <u>HE-LHC</u>).

Snowmass meeting: EW & nPDF in HIC

3000	-1- -1-
2500	sitv [fb
2000	lumino
15 0 0	rated
1000	Integ

5

A Fixed Target Experiment (AFTER) at LHC: arXiv:1807.00603

- Build joint programme between LHCb and ALICE collaborations.
- LHCb currently use gas targets injected in LHC beam pipe through SMOG.
- Goal to collide p (Pb) beams against polarised gas targets at 115 (72) GeV.
- High Luminosity LHC (2028+): CERN-2017-007-M
 - Major LHC upgrade to increase pp luminosity by ~x10 beyond design value.
 - Major detector upgrades: ALICE/LHCb in LS2 and CMS/ATLAS in LS3.
 - Increase of 2-3x HI data in first HL-LHC run (R4) compared to Run 1+2.
 - Proposal to increase LHC beam energy (pp 27 TeV, 17 pPb, <u>HE-LHC</u>).
- Large Hadron electron Collider (LHeC, 2031+): CERN-ACC-2020-2
 - Add a 60 GeV electron beam to LHC using an Energy Recovery Linac.
 - Proposal to install in 2 years at earliest LS4 (2031).
 - Expected e-A luminosity: $\sim 6x10^{32}$ cm-2s⁻¹ (O(10) fb⁻¹ for HL-LHC).

Future plans: LHC

Snowmass meeting: EW & nPDF in HIC

3000	-1- -1-
2500	sitv [fb
2000	lumino
15 0 0	rated
1000	Integ

23/11/2020

13

A Fixed Target Experiment (AFTER) at LHC: arXiv:1807.00603

- Build joint programme between LHCb and ALICE collaborations.
- LHCb currently use gas targets injected in LHC beam pipe through SMOG.
- Goal to collide p (Pb) beams against polarised gas targets at 115 (72) GeV
- High Luminosity LHC (2028+): CERN-2017-007-M
 - Major LHC upgrade to increase pp luminosity by ~x10 beyond design value.
 - Major detector upgrades: ALICE/LHCb in LS2 and CMS/ATLAS in LS3.
 - Increase of 2-3x HI data in first HL-LHC run (R4) compared to Run 1+2.
 - Proposal to increase LHC beam energy (pp 27 TeV, 17 pPb, <u>HE-LHC</u>).
- Large Hadron electron Collider (LHeC, 2031+): CERN-ACC-2020-2
 - Add a 60 GeV electron beam to LHC using an Energy Recovery Linac.
 - Proposal to install in 2 years at earliest LS4 (2031).
 - Expected e-A luminosity: $\sim 6x10^{32}$ cm-2s⁻¹ (O(10) fb⁻¹ for HL-LHC).

Future plans: LHC

Several options been studied:

- FCC-ee (2040-2060): E.P.J.S.T. 228 (2019), 261-623
- FCC-hh (pp and ions, 2060+): E.P.J.S.T. 228 (2019), 755–1107
- FCC-eh (ep and aA): LHeC + FCC, 2040+

Several options been studied:

- FCC-ee (2040-2060): E.P.J.S.T. 228 (2019), 261-623
- FCC-hh (pp and ions, 2060+): E.P.J.S.T. 228 (2019), 755–1107
- FCC-eh (ep and aA): LHeC + FCC, 2040+
- FCC design:
 - 100 km circular collider linked to CERN.
 - Require magnets of 16 T for pp @ 100 TeV / pPb @ 63 TeV / PbPb @ 39 TeV
 - PbPb luminosity (35 nb⁻¹) per month up to \sim 3x full LHC PbPb programme.

Several options been studied:

- FCC-ee (2040-2060): E.P.J.S.T. 228 (2019), 261-623
- FCC-hh (pp and ions, 2060+): E.P.J.S.T. 228 (2019), 755–1107
- FCC-eh (ep and aA): LHeC + FCC, 2040+
- FCC design:
 - 100 km circular collider linked to CERN.

 - Require magnets of 16 T for pp @ 100 TeV / pPb @ 63 TeV / PbPb @ 39 TeV • PbPb luminosity (35 nb⁻¹) per month up to \sim 3x full LHC PbPb programme.

Large increase of all pQCD cross-sections vs LHC:

- Beauty increase by 6-fold
- W/Z increases by 7-fold
- top increases by 80-fold

- Substantial increase of kinematic coverage in x-Q² plane.
- Reach small x region probing saturation at perturbative scales.

Snowmass meeting: EW & nPDF in HIC

15

- Substantial increase of kinematic coverage in x-Q² plane.
- Reach small x region probing saturation at perturbative scales.
- Complementarity with LHeC providing full constraints to nPDFs.

Snowmass meeting: EW & nPDF in HIC

- Substantial increase of kinematic coverage in x-Q² plane.
- Reach small x region probing saturation at perturbative scales.
- Complementarity with LHeC providing full constraints to nPDFs.
- Top quarks in HI provide strong constraints to gluon nPDF at Q=mtop.

Snowmass meeting: EW & nPDF in HIC

• EW boson and top quark measurements in HIC

- > W boson
- > Z boson and Drell-Yan
- > Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- ≻ CERN:
 - > LHC upgrades
 - ► Future Circular Collider
- > China:
 - > Electron Ion Collider in China
- > USA:
 - RHIC upgrades
 - Electron Ion Collider in US

SPHENIX

Outline

Snowmass meeting: EW & nPDF in HIC

Electron Ion Collider in China (EicC)

- Use polarised beams of e (3.5 GeV) and p (ions) (20 GeV/u).
- Precise measurements for nucleon spin structure with flavour separations.
- Complimentary to the US EIC with higher CM energies.
- Plan to start data taking in 2032.

To be installed in the High Intensity Heavy-Ion Accelerator Facility in Huizhou city.

• EW boson and top quark measurements in HIC

- > W boson
- > Z boson and Drell-Yan
- > Prompt photons
- > Top quarks

• Future HIC facilities and nPDF prospects:

- ≻ CERN:
 - > LHC upgrades
 - ► Future Circular Collider
- ➤ China:
 - Electron Ion Collider in China
- > USA:
 - > RHIC upgrades
 - Electron Ion Collider in US

Outline

Snowmass meeting: EW & nPDF in HIC

- sPHENIX (2023+): arXiv:1501.06197
 - Includes a Si tracker, Ecal, Hcal, TPC, vertex detectors and 1.5T B field.
 - Plan to start data taking in early 2023: p+p, p+Au and Au+Au.
 - Goal to collect 145B minbias Au+Au events $\rightarrow \sim 30x$ more than current data.
 - Focus on jet structure, quarkonium spectroscopy, parton energy loss and cold QCD matter studies.

Future plans: RHIC

• sPHENIX (2023+): arXiv:1501.06197

- Includes a Si tracker, Ecal, Hcal, TPC, vertex detectors and 1.5T B field.
- Plan to start data taking in early 2023: p+p, p+Au and Au+Au.
- Goal to collect 145B minbias Au+Au events $\rightarrow \sim 30x$ more than current data.
- Focus on jet structure, quarkonium spectroscopy, parton energy loss and cold QCD matter studies.
- STAR Forward Upgrade programme (2021+): <u>SN</u>
 - Extend tracking system to forward region (2.5 < η
 - Reuse PHENIX Ecal and add new forward hadronic calorimeter.
 - Plan to start data taking in 2021 and run in parallel with sPHENIX.
 - Focus on forward jet ($|\eta| > 1$), direct photon and Drell-Yan measurements.

Future plans: RHIC

23/11/2020

• sPHENIX (2023+): arXiv:1501.06197

- Includes a Si tracker, Ecal, Hcal, TPC, vertex detectors and 1.5T B field.
- Plan to start data taking in early 2023: p+p, p+Au and Au+Au.
- Goal to collect 145B minbias Au+Au events $\rightarrow \sim 30x$ more than current data.
- Focus on jet structure, quarkonium spectroscopy, parton energy loss and cold QCD matter studies.
- STAR Forward Upgrade programme (2021+): <u>SI</u>
 - Extend tracking system to forward region (2.5 < r
 - Reuse PHENIX Ecal and add new forward hadronic calorimeter.
 - Plan to start data taking in 2021 and run in parallel with sPHENIX.
 - Focus on forward jet $(|\eta|>1)$, direct photon and Drell-Yan measurements.
 - Both STAR and sPHENIX data will constrain the gluon nPDFs for Au.

Future plans: RHIC

N0648
$$\eta < 4$$
).

23/11/2020

- EIC project (2030+): arXiv:1212.1701
 - Accelerate polarised beams of: electrons using 400 MeV Linac and ions using AGS.
 - Collide e-A beams at ~20-140 GeV CME and ~10³³⁻³⁴ cm⁻²s⁻² luminosity.
 - Ion species ranging from proton to Uranium.
 - Consider 2 IPs with general-purpose hermetic detectors.

23/11/2020

- EIC project (2030+): arXiv:1212.1701
 - Accelerate polarised beams of: electrons using 400 MeV Linac and ions using AGS.
 - Collide e-A beams at ~20-140 GeV CME and ~10³³⁻³⁴ cm⁻²s⁻² luminosity.
 - Ion species ranging from proton to Uranium.
 - Consider 2 IPs with general-purpose hermetic detectors.
- Main physics programme:
 - Hadron and nuclear matter tomography: TMD and spatial imaging.

- EIC project (2030+): arXiv:1212.1701
 - Accelerate polarised beams of: electrons using 400 MeV Linac and ions using AGS.
 - Collide e-A beams at ~20-140 GeV CME and ~10³³⁻³⁴ cm⁻²s⁻² luminosity.
 - Ion species ranging from proton to Uranium.
 - Consider 2 IPs with general-purpose hermetic detectors.
- Main physics programme:
 - Hadron and nuclear matter tomography: TMD and spatial imaging.
 - Spin and flavour structure of nucleon.

- EIC project (2030+): arXiv:1212.1701
 - Accelerate polarised beams of: electrons using 400 MeV Linac and ions using AGS.
 - Collide e-A beams at ~20-140 GeV CME and ~10³³⁻³⁴ cm⁻²s⁻² luminosity.
 - Ion species ranging from proton to Uranium.
 - Consider 2 IPs with general-purpose hermetic detectors.
- Main physics programme:
 - Hadron and nuclear matter tomography: TMD and spatial imaging.
 - Spin and flavour structure of nucleon.
 - Parton distributions in nuclei covering a wide range of x and Q².
 - QCD at extreme parton densities: saturation.

Snowmass meeting: EW & nPDF in HIC

18

- Electroweak and nPDF measurements:
 - Observation of nuclear PDF effects in W boson production.
 - LHC pPb data provide constrains to current nPDF models.
 - First measurements of top quarks and Drell-Yan in HIC open new opportunities.
 - High p_T photon yields consistent with pQCD while low pT follow scales with charged particle multiplicity (tension between PHENIX and STAR).
 - Z/W bosons in PbPb sensitive to collision geometry (tension between ATLAS and CMS).
- Long-term of QCD global analysis:
 - Exploit data from future HIC facilities (HL-LHC, LHeC, FCC, EicC, EIC).
 - Several collision modes proposed: e-A, p-A, A-A and fixed target.
 - Scan over multiple dimensions: nPDFs, TMDs, flavour, spin, ...
 - Extension to forward physics and low x-regime, probing gluon saturation.

Thank you for your attention!

- pPb/pp ratio deviate from unity in the small and large $\eta_{\rm dijet}$ regions.

Dijet in pPb

- pPb/pp ratio deviate from unity in the small and large η_{dijet} regions.
- EPS09 calculations match data at $\eta_{\rm dijet} < 1$, while DSSZ overpredict the results.

Dijet in pPb

- pPb/pp ratio deviate from unity in the small and large $\eta_{\rm dijet}$ regions.
- EPS09 calculations match data at $\eta_{\rm dijet} < 1$, while DSSZ overpredicts the results.
- Data incompatible with DSSZ and nCTEQ15, while agrees with EPS09 and EPPS16.

Snowmass meeting: EW & nPDF in HIC

Dijet in pPb

Dijet in pPb ATLAS @ 5.02 TeV

• pPb/pp ratio of jet pair yields is suppressed by 20% when sub-leading jet $y_2 > 0$.

Snowmass meeting: EW & nPDF in HIC

Dijet in pPb **ATLAS** @ 5.02 TeV

- pPb/pp ratio of jet pair yields is suppressed by 20% when sub-leading jet $y_2 > 0$.
- Suppression observed in a rapidity region where nuclear shadowing is predicted.

Snowmass meeting: EW & nPDF in HIC

3

- Significant reduction of EPPS16 uncertainties, specially in the forward region.
- Mainly impact the gluon nPDF, adding strong constrains across a large x range.

Snowmass meeting: EW & nPDF in HIC

• LHCb data compatible with nPDF calculations both in forward and backward rapidities.

Prompt D in pPb

- ALICE mid-rapidity measurements described EPPSI6 nPDF results.
- Significant deviation of R_{pPb} from unity at low p_T and at forward rapidity.

Snowmass meeting: EW & nPDF in HIC

• LHCb data compatible with nPDF calculations both in forward and backward rapidities.

Prompt D⁰ in pPb

• ATLAS R_{FB} at mid-rapidity shows no significant deviations from unity.

Snowmass meeting: EW & nPDF in HIC

5

Prompt D⁰ in pPb

- ATLAS R_{FB} at mid-rapidity shows no significant deviations from unity.

• R_{FB} from LHCb show a rising trend with p_T , deviating from nPDF results at high p_T .

5

Impact of D meson pPb data on nPDFs

• Reduction of EPPSI6 and nCTEQI5 uncertainties at forward and backward rapidities.

Snowmass meeting: EW & nPDF in HIC

6

Impact of D meson pPb data on nPDFs

nPDF with LHCb D meson data

- Impose tight constrains on the gluon densities, mainly at low x. \bullet

• Reduction of EPPSI6 and nCTEQI5 uncertainties at forward and backward rapidities.

6