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Variety of applications for MPGDs at Past and present GEM technology development:
future colliders active and growing community

Challenges and points of improvement for  Ongoing and foreseen advancement on new
future applications detectors
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Micro-pattern gaseous detectors
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GEM detectors at the LHC

State-of-the-art GEM technology are the triple In ongoing experiments
GEM chambers at the LHC experiments

COMPASS, first experiment to ~ TOTEM T2 telescope
use GEMs in a physics run*  for tracking and triggering'

CMS Phase 2 upgrade: three GEM stations
for each muon endcap
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Already installed _
Installation by LS3 Hadron-Blind Detector at PHENIX, conceptually unique
Total 1000 m? instrumented surface application for combinatorial background rejection®’
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Improvements on GEM technology at LHC experiments

Triple GEM detectors have come a long way since early applications
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“Standard” COMPASS triple GEM schematic Interest sparked also in the RD51 community
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Ongoing progress on GEM detectors optimization

Development of GEM technology is far from being over
Examples of present challenges in che CMS Phase 2 upgrade

GEM detectors were born for high rate capability... Researching on signals cross-talk due to
- | | double foil segmentation...
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MPGD applications at future colliders

Foreseen development of MPGDs at future colliders (FCC-ee, FCC-hh, Muon Collider)

Preshower detector == Calorimeter readout

Before the barrel and For digital readout of
endcap calorimeters of hadron calorimeter,

the IDEA experiment at e as higher-rate
the FCC-ee! alternative to RPCs?

\\

no access after installation

High rates

-«

Applications beyond muons

N

Muon tracker Time projection chamber readout
High-rate muon systems, e.g. Following the example of ALICE
IDEA (FCC-ee) or muon 4-GEM TPC upgrade

collider experiments
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Requirements for future MPGDs
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> Improved time resolution (< 1 ns)

To sustain higher pileup Resistive electrodes reduce rate capability w.r. to

_ _ . traditional MPGDs*, but there are high-rate solutions
> Fast, high-gain readout electronics e.g. G. Bencivenni et al 2019 JINST 14 P05014
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https://doi.org/10.1088/1748-0221/14/05/P05014

Resistive MPGDs based on GEM technology

Introduction of resistive electrodes in GEM chambers will improve

v Intrinsic spark protection  arifing
. . . . . = electrons
No external discharge mitigation circuits GEM 1 :

v Simpler detector structure —CE2 e = = -
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Multi-GEM stack not needed -
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v Higher gain at lower voltages
Up to 10* with single layer
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Resistive MPGD for fast timing

Traditional MPGB _ Fast Timing MPGD Purpose of the fast timing MPGD (FTM):

Improving on the time resolution of traditional MPGDs
AMP 700
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Bari, Pavia (ltaly), Ghent (Belgium) and measured two-layer time resolution at test beam?
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DLC coating for the FTM

Large scale production of resistive electrodes

Graphite Diamond Diamond-Like Carbon .
requires up-to-date deposition techniques : - 3o 3t |3
-2 8 A% o % o g
- - ""‘*—«% F-3 kY

 uniform coating of large areas é.*,:- i 9% oooes s §
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> 1000 m? to be covered o sl 4

 precise control over electrode resistivity Resistive materials of choice

> 200 k§2/sq. required for foil transparency > Diamond-like carbon « ongoing R&D

* stable adhesion over long time > Graphene < future developments

RESISTIVE CATHODE TRANSPARENCY

G. BATTISTONI, P. CAMPANA, V. CHIARELLA, U. DENNI, E. IAROCCI and G. NICOLETTI
INFN — Laboratori Nazionali i Fraseati, Frascati, Italy

Production challenge
for FTM foils:
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Deposition of resistive coating for the FTM

Better understanding of DLC deposition techniques is required

. . Apial substrte Magnetron sputtering
SN / Most consolidated, mastered in China (USTC)
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“Domestic”’ solutions
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> Possible adoption for larger production if suitable partner
is found
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Foil etching and latest FTM prototype
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MPGD applications outside HEP

X-ray imaging
- | .éﬁ:"_’lé I:\.';g:-'..:

- : ‘_-_-—_"_h&‘

For security and industrial applications

Medical diagnostics

NON TOF

Annihilation

TOF 10ps

o9

Improved PET with precise
time-of-flight over line of response

Muon tomography

10.5772/intechopen.75426

Achieved with

micromegas, proposed
with GEMs as well

CEA/Irfu

For geology and homeland security
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Conclusions

> Foreseen roles for micro-pattern gaseous detectors in HEP
experiments at future colliders

 Muon tracker, calorimeter preshower and readout, TPC
readout

> Pivotal role for resistive MPGDs in further development from
state-of-the-art

e Higher space resolution
* Intrinsic spark protection
e Multiple layers for fast timing

> Ongoing R&D on resistive materials
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