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We Have a Lot of Data

+ High Energy Uses ML in
» Object classification \\/(
- Triggering =1
LHC Run 2 across 4
experiments generates, on
average, 25 GB/s of data.

» Event reconstruction

» Event selection

> Data pre-processing

» Measurement uncertainties
> Detector Design

Better machine learning means better
results, better simulations.

/

/" WHAT You NEED 1© A

HUGE

\ AMOUNT OF DATA Image: Radovic, A., Williams, M., Rousseau, D., Nature, M. K., 2018. (n.d.). Machine learning at the
' energy and intensity frontiers of particle physics

~ 1000 ML papers published to ArXiV just
this month

/" TUAT'S WHY WE RUN
~ THIS THING 40 MILLION
\mee/secow, ALL

DAY, ALL YEAR.

C’C') TELL SMALL DIFFERENCES

L

%\
(AT NN
/ Yol o \‘_
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The Curse of ML Performance! The Black Box Problem

- Modern ML tools tend to be Black Box solutions.

- Neural Networks (NN)

- Deep Neural Networks (DNN)

- Boosted Decision/Regression Trees (BDT/BRT)
- Support Vector Machines (SVM)

- Qenerative Adversarial Networks (GAN)

- Autoencoders

- Black Box methods can’t tell you what they've learned.

- A Black Box is a “mysterious function” that maps data to predictions.

So what? Why is that a problem?

University of California, Irvine

Black Box

f(x)=>

November 13, 2020
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Real World Example: Jet Classification With Black Box Learning

Image: https://www.ericmetodiev.com/post/jetformation/

Consider the task of identifying jets

- Jets: collimated groups of stable hadrons
from hadronizing quarks/gluons

- Jets are detected as energy depositions in

a calorimeter. S |
e Hadronization Jesecton
a
\ \ Fragmentation hadrons G ...
e partons )@@ ...
Raw Sparsified Reco Select Physics Ana

Detector Measurements

le/ le 100-ish* 50 10 ]

can exist In many
different states of
"dimensionality

reduction”
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Comparing ML With Low Level and High Level Jet Data

2 popular versions of jet data: Which works better ?

1. Low Level (high-dimensional) : Jet Images HLorlLL ?
Blind NN vs Physicists!

2. High Level (low-dimensional): Jet Substructure (JSS)

Low Level (LL) - Jet Images

Transverse energy (E1) in an (n, ®) calorimeter grid.

High Level (HL) - Jet Substructure

Physics motivated variables which encode

Treat it as an “image” and learn with a Convolutional

Neural Network (CNN) information into simple 1-D variables
1 & & 2ptpr P,
Mass M =7 Z Z ZaZp - g = -
— 2 EaEb ZPT
® [r = Transverse Energy a b i+ T
® Position (n, ¢) N-subjetiness Ty = ZPT min (Qab, D) 0005 QN,k)
k
® 1 =-In(tan(6/2)) Sub-structure examples

University of California, Irvine November 13, 2020
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Test Case for Jet Classification: Binary Classifier of Mono-Jet vs Boosted Di-Jet

Boosted W bosons (W = qqg’) create highly collimated di-jets.

Can we teach a CNN to identify boosted di-jets from QCD background mono-jets (qqg, ag, 9g)?

Mono-jet Dijet one jet?

two jets?

.

% -

PP — 49
PP — 4§
PP — 88

Increasing momentum

pp = W"W~™ — qqqq

University of California, Irvine November 13, 2020
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Binary Classifier: Di-Jet vs Mono-Jet

QCD Jet (g, g)

==

=——

Al

I.I
[

1 Event Average of all events 1 Event Average of all events
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A Perfect Test Case

-
o 10 _
- Baldi et al. find a CNN on jet images performs 9 Plle-up 9>=50  __ DNN(image)
better than Jet Substructure L ape — BDT(expert)
2 — D), +mass
- Jet Images (red line): AUC = 95.30% * 0.02% 5 f ~ T, +Mass
'E? 107: — Jet mass
- JSS (blue line): AUC = 95.00% + 0.02% S F
- Where is that extra information coming from? 10
- Why don't our standard Jet Substructure 1 _

N S R AN T T T N Y WA SN AN SO SR TR NN N N !
0O 02 04 06 08 1
Signal efficiency

observables contain this information?

- Is it real physics that we don't know about yet?
Baldi, P, Bauer, K., Eng, C., Sadowski, P, &

Whiteson, D. (2016, March 30). Jet Substructure

We've used a black bOX, so how what? _\_(\\/)_/_ Classification in High-Energy Physics with Deep

Neural Networks. arXiv.org. http://doi.org/
10.1103/PhysRevD.93.094034

University of California, Irvine November 13, 2020
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That's Not the Only Problem

Black Box models trained on LL data:

- Can't be validated as using real/physical information vs “improvements” through some

quirks of processing, sampling, architecture. HL observables can be individually inspected.

- Can’t measure systematic uncertainties. HL observables can be individually studied ana
calibrated.

- Are storage, memory and training intensive.

- Can't improve or contribute new insights into the physics of the problem being studied.

University of California, Irvine November 13, 2020
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More Examples of an Information Gap in HEP (HL Vs LL)

iggs
ClaSSIfI catlon JetpT of Sg?sk’)cituents, MET & Low-Level: AUC=0.88

-tags

Performance

2 g’ High-Level: AUC=0.80
@ &
g 3) W - -go.v -2015
. L~ g
)%3()‘_\ 2o £ o Receiver Operating Characteristic (ROC)
@) | . . - | | | | |
AN ' » S . :
. O RS r e SN
“Jet2p. (GaV] o T S
q) :,,"‘
(b) C 0.8 —
©
o C “‘ “"
High-Level S 06l N -
S “ "g
g) -------- DN lo+hi-level (AUC=0.88) N,
Invariant mass: M(WWbb), M(Wbb), etc S 04r i -
m o
B [ f—— gy [e—— e DN lo-level (AUC=0.88) .
& 0.2 Y
= "
c 02
§ -------- DN hi-level (AUC=0.80)
0.1 U o
| | | | |
(b) 0 0.2 0.4 0.6 0.8 1

Signal efficiency
(b)

https://arxiv.org/abs/1402.4735 - Searching for Exotic Particles in High-Energy Physics with Deep Learning

University of California, Irvine 12 November 13, 2020
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More Examples of an Information Gap in HEP (HL Vs LL)

Electron Identification ,» - z - ¢*e- vs QCD Jet Background

Low-Level
Electromagnetic Ca.lonmeter Images P er fo rrmance

o - . Low-Level: AUC=0.972 + 0.001
: ol > . High-Level High-Level: AUC=0.956 + 0.00

O EEFEEEE / JSS Observables + Jet Mass
n ,
(a) Example Electll;on (b) Mean Electron . (Ruad, w2, Rg, Ry, 04y, [S0(AR < 0.3), Iso(AR < 0.4)) 10° —— Images(ECal+HCal), AUC=0.972
03 03 c o —— High-Level Features, AUC=0.945
* | RS ‘ | S Eacrormund = background o 10 —— Image(ECal), AUC=0.918
01 . ) 10 01 10 . 3 signal } 1 signal 8 104 — |mage(HCa|), AUC=0.825
=3 OD. - 10-* © 00 10-% %;.. 1 : '07
-0.1 a : - -0.1 . 5 N o b
-0.2 , -0.2 ’ 0O -8 103
-0.3 b N “ = h -0.3 h o “ =
." 104 104 e
06’ 01 0\ 0° 0\ 01 0"’ 0‘5 Qlx 0‘\ 00 0\ 0"' 0" 5 2 M M M 10 . 000 02% 0% 07% 100 12% 1% 17% JMO o.’ 102
n Candidate Rpaq Candidate wg; = ‘t‘)
(c) Example Jet (d) Mean Jet B 10
FIG. 2: Images in the electromagnetic calorimeter for signal FIG. 4: Distribution of signal electron (red) and background 100
electrons (top) and background jets (bottom). On the left are jets (blue) for seven existing typically-used high-level features, Y 5 A e e 0
individual examples, on the right are mean images. See Fig. 3 as well as for mass. ' ' ' ' ' '

for corresponding hadronic calorimeter images. Signal efficiency

https://arxiv.org/abs/2011.01984 - Learning to Identify Electrons

University of California, Irvine November 13, 2020
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Solving the Black Box Problem

We’ve established a problem with Black Box solutions. How do we fix it?

3 Approaches to dealing with the problem:
1. Only use interpretable ML.
- Not Ideal. Loss in performance AND you lose the opportunity to learn new physics.

2. Modity Black Box to be interpretable

- Disadvantages: Captures “most” information but not all.

- Complex to design & modity.

- Example: Microsoft Research - Intelligible Machine Learning Models for HealthCare

3. [Our Solution] -> Use the Black Box and map it’s solution to a human readable space

- Take full advantage of your models performance

- Use any ML method you want. DNN, SVM, etc.

University of California, Irvine 15 November 13, 2020
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Mapping ML to a Human Readable Space

- What do we need to map learned information to a human readable space?

(1) A LL solution that performs better than the HL

v We have this from our CNN on jet images.
(2) A "human readable” space of HL variables.

(3) A metric for mapping the LL solution into those HL variables.

Learned (3)
solutions , New
Metric Physics!
| (1) y
High- .
dimensional - CNN \

features

Comprehensive human-
interpretable function space

University of California, Irvine November 13, 2020
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Piece 2 - the Engineered Space of Human-Interpretable Variables

Energy FlO\{V Polynomlals (EFE): For every set of graphs, we can also modify
Complete linear basis set for jet 2 parameters (K, )
substructure

Pr;

<

The set of EFPs is defined as all
isomorphic graphs, with pt anc
position (8) as defined below

- Zi pT,i

; ; pl2

Graph components Examples
>
Node/Vertex: = ) z, V&
a / - 2 Z ZaZbHab
a b
Edges: = 0,
Multiple Edges = (Qab)z
N N N N N
K — Z Z Z Z 2 ZaZchZdZeHc%cebdebeecd
<a = pT,a a b ¢ d e
BI2
Oy = (A1, + Agpy)

Komiske, P. T., Metodiev, E. M., & Thaler, J. (2017, December 19). Energy flow polynomials: A complete linear basis for jet substructure.

University of California, Irvine 17 November 13, 2020
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Piece 3 - ROC Is the Right Way To Approach It, but We Need To Modify lIt.

- We don’t want to use ROC/AUC.
ROC/AUC is analogous to our process, but

- ROC describes training performanc:e, Nnot Replacing TP/FP comparisons with decision boundaries
decision making similarity. < -

- ROC compares True Positive Rates at
different thresholds of False Positive Rates.

- But it's the right idea! We want:

- For 2 neural networks, at different
thresholds of NN output, what is the
relative similarity of the decision

surfaces of each?

0% P(FP) 100%

University of California, Irvine November 13, 2020
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Piece 3 - Average Decision Ordering (ADO)

We want an equivalent to ROC for 2 discriminating functions Heaviside(x)

[f(x) and g(x)]. Classification decision of two functions at S
different thresholds. E
- | :
Step 1: Decision Ordering “E | ‘5
For points from signal and background (x and x’), we compare B
how each function maps those points relative to one another. ol 3
DO(x, x") = H [(f(x) — f(x)) - (g(x) — gx))] Similar Orderings = +1

Dissimilar Orderings = O

Similar Orderings Dissimilar Orderings
X /
. ) ... x  gx)  x A x gx) x fx) . ~ X X
----------------------- X f(X) ““.“‘ I ’0,. * _‘.-‘_.--" I g(X) .
..,.:,::.' o . ’s
I ] ] I
------------------- * (X X ,
R X X guex || €T e o) ® x RS .
(+) (+) (-) (-) (+) (-)

University of California, Irvine November 13, 2020
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Piece 3 - Average Decision Ordering (ADO)

Step 2: Average Step 3 Observable AUC
Sum over all combinations of signal/ dln\fe.rt a\f’erafes S5 tk};ar.‘ O°5t(TL‘et Méetl 0.898 £ 0.004
. . . ecision tunction Can e Inverte O =

baCkg round decision orderlngs make the opposite/correct decisions) 02622 0-06020.99
PP C 0.604 + 0.007
DJ=! 0.790 4 0.005
ADO' = ) DO(x, x) ADO = 1 — ADO D=2 0807 % 0.005
7= 0.662 + 0.006

AUC of 6HL Observables

- Similar performance (AUC) is not equivalent to similar - 1.0
Me:  1.00

decision making.

0.9
- Example: Energy Correlation C2B1 & C2B2 are
similar. DNN with C2B1 makes BETTER decisions R
than with C2B2 S
- Traditional HL variables are not an “orthogonal” to o
one another. They share mutual information.
0.5

Mjer — b=t cB=2 pb=t ph=2 E=1

ADQO similarity of pairs of HL Observables

University of California, Irvine November 13, 2020
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How To Find New Jet Substructure - Guided Iteration by ADO

- 3 Components

Signal/Background Pairs

1. CNN(LL): Low Level Model

2. DNN(HL): Initial High Level Observables (i.e. M;.:, n-subjettiness, etc) BBN I

3. EFP: Candidate EFPs

Same
Decision

- Steps in the algorithm: Ordering?
1. (pass 0): Train a NN on initial HL variables DNN(HL). 8HLN 1
O
O
2. Generate a randomized set of signal/background pairs from the data.
3. lsolate the “Differently Ordered” subset of sig/bkg pairs. = Differently Ordered Pairs
i.e. what pairs of events do DNN(HL) and CNN(LL) make different decisions? I RBN
4. From the “Difterently Ordered” subset, find EFP with the maximum ADO with No = y T
the CNN(LL) | | )@ gf;;iiizr;
1. i.e. EFP, = MAX[]ADOI[EFPi, CNN(LL)]]. _— T’@ J
Y. 1 )@ SN
5. Include this EFP; into your HL Observables and return to step 1 “ s _—— 1S

DNN(HL) becomes DNN(HL, EFP;)

University of California, Irvine November 13, 2020
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What's the Logic?

- We want to iteratively build a set of useful
observables.

- Each pass isolates the subspace where HL and LL are
making different choices.

- We are finding the EFP most suitable to fill the gap

- Subsequent passes, DNN(HL) includes this EFP. The

next EFP should be looking to fill a “new” gap in
information.

- Repeat this process until they no longer disagree!

University of California, Irvine

Seminar Talk

DNN(HL)

Differently
Ordered Space

November 13, 2020

CNN(LL)

EFP,
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Guided Iteration - A “Supplemental Search”

Which EFP did we pick?

How many EFPs do we need to find to

(k=2, p=1/2) N
supplement our existing HL variables? = ) 2252252\ 0050ulud
a,b,c,d=1
Just 1!
Noteworthy details
Observable AUQ ADO[CNN, Obs. - EFP is not Infrared-safe (k # 1)
Miet 0.898 £ 0.004 0.807 | | |
B=1 n - B=1/2 is probing small-angle behaviour
@s 0.660 = 0.006 0.584 P 9 9
p=2 i : :
025_1 0.604 = 0.007 0.548 - Chromatic #3 graph (probing 2-prong substructure)
D5 0.790 4= 0.005 0.743
DJ=? 0.807 + 0.005 0.762
7-521 0662 - 0006 0600 1 Background in space EFP; [ Background in subspace X;
Existing HL 6HL 0.9504 £ 0.0002 0.971 ++9] =2 signalin space £77 | | =2 signal in subspace X 1
o CNN 0.9531 = 0.0002 1.000 0.
N9 A THL plackbox 0-9528 % 0.0003 0.971 N .& : Sig/Bkg separation is
3 0.6 B low in differently B
A (k=2, B=0.5) - ordered space but the 0
0.4- ' gap is still filled
AUC are equal but ADO < 1. 02‘/4_,_.—']‘ 1 |
Equal performance but not equivalent 0.0 ——r . fT:_ " 5 . . sram

log1o [EFP Observable] log,o [EFP Observable]

decision makers.

University of California, Irvine

November 13, 2020
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Guided lIteration - A “Black Box"” Approach

Seminar Talk

Alternate Approach: Start with the fewest HL observables possible (Jet Mass and Jet pt) and ask

the process to choose ALL of our EFPs from scratch.

1

I[teration (n)| EFP k (B Chrom #

ADO[EFP, CNN]x, , AUC[EFP]] AUC[HLN,,]

0 Mjet + pr| — - -

AN
p—t
N |
(\)

7 % —-1 2 2

0.8144

0.6377

0.5460

0.5274

0.5450

0.5332

0.5061

0.8190

0.8106

0.6737

0.8464

0.0882

0.7678

0.5957

0.9119

0.9332

0.9458

0.9476

0.9487

0.9504

0.9523

0.9528

DNN(HL)
performance
Improves on every
pass

We can match
performance of the LL
network with purely
“learned” observables

EFPs with poor individual performance contribute in a mixed dataset

University of California, Irvine

24
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Learning From the EFPs

Black Box Guided EFP Selections (1-4)
Additional Observations

Pass Graph (K, B) Interpretation
- First EFP is k=2. This matches the Supplemental Search (IRC Unsafe) - 5 out Of 7 EFPs (including the
- Chromatic #2 Mass (same as Jet Mass) which probes 1-prong . .
1 (2,1/2)  substructure earliest choices) are IRC

- 5-point Correlator (different from Jet Mass, a 2-point correlator)

- B=1/2 (unlike mass with B=2) probes small-angle radiation unsafe.

- 1-prong substructure is a

- Second EFP is k=0. Also IRC Unsafe. : :
strong predictor despite the

2 (0, 2) - Also Chromatic #2 - Reinforces importance of 1-prong substructure.

- (k=0, B=2) probes soft, wide-angle radiation. fact the signal IS 2—prong

- First EFP not probing 1-prong

- Equivalent to constituent multiplicity. This is an existing substructure .

3 ® 0 ) observable that we simply weren’t using in HL substructure is Pass 6 (C=4)
- - Reinforces controlling composition of quark/gluon is important for W
taggin :
993 - Although matching the
CNN(LL) and Supplemental

- First IRC Safe information Search the EFP choices are
A (1.1/2) - Another Chromatic #2 graph (still probing 1-prong substructure) '.

- Small angle radiation VERY different and

“unconventional”

University of California, Irvine November 13, 2020
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Guided lIteration - A “Black Box"” Approach

- Some reasonable questions:

- "lf the information exists in the EFPs, why not just
try combinations of them?”

- "Why choose EFPs based on the CNN? Why not

let ground truth (i.e. labels on your data) be your
guide?”

- We compare these other methods:

1. Black-box Guided: Guided lteration by ADO
with CNN(LL) as the benchmark. (our approach)

2. Brute Force: Try every combination of EFP in a
DNN. (Very inefficient)

3. Truth Guided: Guided Iteration by ADO with
ground truth as the benchmark. (Note: this is
equivalent to selecting EFPs based on AUC
performance)

University of California, Irvine

0.92-

0.91

1.00

]
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—— Truth Guided
--- CNN

....... 6 HL
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Guided Iteration - Results

- Truth-Guided can’t recover the LL performance.

- Truth Guided attempts to optimize to truth labels
even when that information isn‘t accessible in the
data

- The CNN is optimizing explicitly for performance
and reducing/expanding the space for us. We are
trying to piggy-back on that problem solving

- Brute Force gets good performance (as you would
expect just trying them all) but is extremely
inefficient.

- 1 EFP selection from Brute Force takes longer
than the entire guided search.

- Hyperparameter optimization is common. Full

orute force must be re-run for every change to
the NN.

University of California, Irvine

Seminar Talk

_____________________________ —]
095 R T T T T T T T e
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Overview/Discussion

- As ML methods increase in complexity, they become more opaque.

- Opaque Black Box learning shouldn’t be viewed as having "“learned” the data in a meaningful
sense. The results can’t be validated or understood. We can’t inspect the Black Box. We can’t
measure systematic uncertainties of the Black Box.

- Where possible, use interpretable models that match opaque solutions.

- When equivalent performance is not possible with interpretable models, a Black Box can tell
you how much performance is possible but an interpretable approach (like Guided Iteration by
ADO) should be used to try and recover that information.

- Answers we don’t understand aren’t really “answers” at all.

University of California, Irvine November 13, 2020
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What'’s Next? Dark Matter of Course!

Motivation? 7w
q : \
- Dark Matter is one of the most promising
BSM searches. This will be a large focus —X
of LHC run 3. :
q X {
, , (a) 94 = xx +g (b) 473 = xx +v,Z,W
- Prl mari |y, CuU rrent SearCheS at the I—HC are Fig. 3. WIMP production at hadron colliders in association with (a) a jet or (b) a photon or a
. . . Z or W boson.
tuned for identitying WIMPs (Weakly
Interacting Massive Particle)
C
- As a result, LHC searches primarily look
for:
(a) Monojets as a sign of MET from a
WIMP.
(b) mono-W, mono-Z or ano_photon Fig. 4. The cylindrical view of a monojet candidate event (piS* = 574.2 GeV, ERis = 598.3 GeV))
from the CMS experiment.®®

in excess of SM background.

Mitsou, V. A. (2013, October 3). Shedding Light on Dark Matter at Colliders. arXiv.org. http://doi.org/10.1142/50217751X13300524

University of California, Irvine 30 November 13, 2020



Suppose

What if there is an entire dark sector with similar QC

Physicists Learning from Machines Learning

Instead of WIMPS, What About a Dark Sector?

Seminar Talk

DM is not the result of a single hidden particle

D/SM dynamics?

Standard Model Mediator Dark Sector
Y8 4 .- ”Y/,g/,q/,...
T, p9p9'°° g, pdap(b“'
X,7Z' h, ... SU(N)’
or
SU(3) x SU(2) x U(1) SU(N)" x U(1)
or

dark parton = shower = hadronization = dark meson decay back to SM

University of California, Irvine
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Dark Jets - the Panoply

Seminar Talk

There are a variety of different dark jets that can be "“observed” which yield different combinations of stable/
visible jets and/or missing transverse energy. For our analysis tools, we are interested in investigating fractional
decay (Semi-visible jets). In this dark sector, a portion of dark sector parsons decay to stable SM jets and the

remainder to dark jets. Yielding an unexpected jet + MET.

However, in the case of semi-visible jets, the observed QCD jet and the MET are closely aligned and current LHC
vetos exclude much of this region.

. P
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I' ¢
P
4 V3
e’ M ¢
¢
" ’ "
4 l' ’ P
L4 o
LA 4 V4 o ¢'
¢ 0 P , .
¢ ¢ 4 .’ o’
V2R 4 04 PN P
¢ ¢ '0 A '¢
I" . 4 P
" P P 3
l' V4 4
¢ Ve e,
o, o 5
¢ o ¢ o
4, ps L
" P ¢ o
o 0
RIS
Y o e °
’O'O'Q
e, %°
0,’,%
'06
o %*
e
3 Dark Jet
KX ar e
2 3
’ isibl
Visible Jet

Jet + displaced tracks

9 ¢ 0
*,2,%"°
R Dark Jet
%0
o Visible Jet

Jet + MET

Dark Jet
Visible Jet

Dark Jet
Visible Jet

Stable dark jet

Long lived dark jets

University of California, Irvine

Fractional decay

(Semi-visible jet)

Rapid decay
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Semi-Visible Jets Are Trimmed Out

However, SVJ are all but ruled out from the search since the LHC data veto requires a minimum
ME

This eliminates QCD background contamination but also would exclude semi-visible jets.

/jet angular separation.

Seminar Talk

— QCD

-= Semi-visible Jet |

FIG. 1: (left) The distribution of transverse missing energy Fr for the QCD background (solid blue), as well as the semi-visible
jet (dashed red) and WIMP (dotted green) examples. (right) The distribution of A¢ = min {A¢;, g, Adj, k. }, where j1 2 are

the two hardest jets.

University of California, Irvine

' 101 :
— QCD | |
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Semi-Visible Jets Are Trimmed Out

- These LHC vetos are approximately

- AP =

- MET = 500

- After both cuts

- 70% of WIMP signal remains

- 7% of SVJ signal remains

-urther, jet studies cut on the
Kinematic variable ar > 0.55

- 20% ot WIMP signal remains

- 3% of SVJ remains

University of California, Irvine

o tdo /dAg

101

A = min {Aqojl . A¢j2ET}

— QCD
-= Semi-visible Jet
L - WIMP
T L
I_i. :
14,
0 1 2
A¢

Seminar Talk

500

— QCD
== Semi-visible Jet

= WIMP

1000
FEr (GeV)

1500

Assuming the veto is removed/relaxed, transverse
mass is proposed as a discriminating variable.

This, however, is the only observable so far tested.
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