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Defining The Problem
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LHC Run 2 across 4 
experiments generates, on 
average, 25 GB/s of data.

We Have a Lot of Data

‣ High Energy Uses ML in


‣ Object classification


‣ Triggering


‣ Event reconstruction


‣ Event selection


‣ Data pre-processing


‣ Measurement uncertainties


‣ Detector Design


Better machine learning means better 
results, better simulations.


≈ 1000 ML papers published to ArXiV just 
this month

Image: Radovic, A., Williams, M., Rousseau, D., Nature, M. K., 2018. (n.d.). Machine learning at the 
energy and intensity frontiers of particle physics
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- Modern ML tools tend to be Black Box solutions. 


- Neural Networks (NN)


- Deep Neural Networks (DNN)


- Boosted Decision/Regression Trees (BDT/BRT)


- Support Vector Machines (SVM)


- Generative Adversarial Networks (GAN) 


- Autoencoders 


- Black Box methods can’t tell you what they’ve learned.


- A Black Box is a “mysterious function” that maps data to predictions. 

The Curse of ML Performance! The Black Box Problem

 So what? Why is that a problem? 
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- Jets: collimated groups of stable hadrons 
from hadronizing quarks/gluons


- Jets are detected as energy depositions in 
a calorimeter. 

Real World Example: Jet Classification With Black Box Learning

Image: https://www.ericmetodiev.com/post/jetformation/

Dimensionality
Raw             Sparsified      Reco           Select      Physics    Ana
1e7                 1e4            100-ish*     50           10          1 

ish*: dimensionality is variable here

Dimensionality
Raw             Sparsified      Reco           Select      Physics    Ana
1e7                 1e4            100-ish*     50           10          1 

ish*: dimensionality is variable here

 Consider the task of identifying jets 

Detector Measurements 
can exist in many 
different states of 
“dimensionality 

reduction”
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Comparing ML With Low Level and High Level Jet Data

• ET = Transverse Energy


• Position (η, φ)


•  η = -ln(tan(θ/2)) 

Mass Mjet =
1
2

N

∑
a

N

∑
b

zazb (
2pμ

a pμ
b

EaEb )
N-subjetiness τN = ∑

k

pT min (θab, θbc, …, θN,k)

Physics motivated variables which encode 
information into simple 1-D variables

Transverse energy (ET) in an (η, φ) calorimeter grid. 
Treat it as an “image” and learn with a Convolutional 

Neural Network (CNN)

Sub-structure examples

2 popular versions of jet data:


1. Low Level (high-dimensional) : Jet Images


2. High Level (low-dimensional): Jet Substructure (JSS)

 Low Level (LL) - Jet Images  High Level (HL) - Jet Substructure 

zi =
PT,i

∑i PT,i

Which works better ? 

HL or LL ?


Blind NN vs Physicists!
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Test Case for Jet Classification: Binary Classifier of Mono-Jet vs Boosted Di-Jet

Boosted W bosons (W → qq’) create highly collimated di-jets.  


Can we teach a CNN to identify boosted di-jets from QCD background mono-jets (qq, qg, gg)?

Mono-jet

pp → qq
pp → qg
pp → gg pp → W+W− → qqqq

Increasing momentum

Dijet

j1

j2

j1

j2

one jet?

two jets?
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Binary Classifier: Di-Jet vs Mono-Jet
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.

tan(✓) =
X

i

�i ⇥ Ei

Ri

�X

i

⌘i ⇥ Ei

Ri
(1)

Ri =
q
⌘2i + �2

i . (2)

Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

1 Event Average of all events

3

Trimmed Mass (GeV)
0 20 40 60 80 100 120 140 160 180 200

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.02

0.04

0.06 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β
21τ

0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=2β

2C
0 0.05 0.1 0.15 0.2

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.02

0.04

0.06
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β

2C
0 0.1 0.2 0.3 0.4 0.5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=2β
2D

0 1 2 3 4 5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04

0.05 W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

=1β
2D

0 1 2 3 4 5

Fr
ac

tio
n 

of
 E

ve
nt

s

0

0.01

0.02

0.03

0.04
W->qq
QCD

 >=50µW->qq < 
 >=50µQCD < 

FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

1 Event Average of all events

 QCD Jet (q, g)  W jet 
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A Perfect Test Case
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

Baldi, P., Bauer, K., Eng, C., Sadowski, P., & 
Whiteson, D. (2016, March 30). Jet Substructure 
Classification in High-Energy Physics with Deep 

Neural Networks. arXiv.org. http://doi.org/
10.1103/PhysRevD.93.094034

- Baldi et al. find  a CNN on jet images performs 
better than Jet Substructure


- Jet Images (red line): AUC = 95.30% ± 0.02%


- JSS (blue line): AUC = 95.00% ± 0.02%


- Where is that extra information coming from? 


- Why don’t our standard Jet Substructure 
observables contain this information? 


- Is it real physics that we don’t know about yet? 


 We’ve used a black box, so now what? ¯\_(ツ)_/¯ 
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Black Box models trained on LL data:


- Can’t be validated as using real/physical information vs “improvements” through some 
quirks of processing, sampling, architecture. HL observables can be individually inspected.


- Can’t measure systematic uncertainties. HL observables can be individually studied and 
calibrated. 


- Are storage, memory and training intensive. 


- Can’t improve or contribute new insights into the physics of the problem being studied.

That’s Not the Only Problem
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More Examples of an Information Gap in HEP (HL Vs LL)

Higgs 
Classification

 Low-Level  

Jet pT of constituents, MET & 
Jet b-tags

 High-Level  

Invariant mass: M(WWbb), M(Wbb), etc

 Performance 

7

TABLE I: Performance for Higgs benchmark. Com-
parison of the performance of several learning techniques:
boosted decision trees (BDT), shallow neural networks (NN),
and deep neural networks (DN) for three sets of input fea-
tures: low-level features, high-level features and the complete
set of features. Each neural network was trained five times
with di↵erent random initializations. The table displays the
mean Area Under the Curve (AUC) of the signal-rejection
curve in Figure 7, with standard deviations in parentheses as
well as the expected significance of a discovery (in units of
Gaussian �) for 100 signal events and 1000 ± 50 background
events.

AUC

Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)

NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)

DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete

NN 2.5� 3.1� 3.7�

DN 4.9� 3.6� 5.0�

better understood than others, so that some simulated
background collisions have larger associated systematic
uncertainties than other collisions. This can transform
the problem into one of reinforcement learning, where
per-collision truth labels no longer indicate the ideal net-
work output target. This is beyond the scope of this
study, but see Refs. [22, 23] for stochastic optimizaton
strategies for such problems.

Figure 7 and Table I show the signal e�ciency and
background rejection for varying thresholds on the out-
put of the neural network (NN) or boosted decision tree
(BDT).

A shallow NN or BDT trained using only the low-level
features performs significantly worse than one trained
with only the high-level features. This implies that the
shallow NN and BDT are not succeeding in indepen-
dently discovering the discriminating power of the high-
level features. This is a well-known problem with shallow
learning methods, and motivates the calculation of high-
level features.

Methods trained with only the high-level features,
however, have a weaker performance than those trained
with the full suite of features, which suggests that despite
the insight represented by the high-level features, they do
not capture all of the information contained in the low-
level features. The deep learning techniques show nearly
equivalent performance using the low-level features and
the complete features, suggesting that they are automat-
ically discovering the insight contained in the high-level
features. Finally, the deep learning technique finds addi-
tional separation power beyond what is contained in the
high-level features, demonstrated by the superior perfor-
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DN lo+hi-level (AUC=0.88)

DN lo-level    (AUC=0.88)

DN hi-level    (AUC=0.80)

(b)

FIG. 7: Performance for Higgs benchmark. For the
Higgs benchmark, comparison of background rejection versus
signal e�ciency for the traditional learning method (a) and
the deep learning method (b) using the low-level features, the
high-level features and the complete set of features.

mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background

Receiver Operating Characteristic (ROC)

Low-Level: AUC=0.88


High-Level: AUC=0.80

https://arxiv.org/abs/1402.4735 - Searching for Exotic Particles in High-Energy Physics with Deep Learning

 

https://arxiv.org/abs/1402.4735
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More Examples of an Information Gap in HEP (HL Vs LL)

https://arxiv.org/abs/2011.01984 - Learning to Identify Electrons

Electron Identification pp → Z′￼ → e+e− vs QCD Jet Background

 Low-Level 

 High-Level 

7 JSS Observables + Jet Mass

 Performance 

Low-Level: AUC=0.972 ± 0.001


High-Level: AUC=0.956 ± 0.001

https://arxiv.org/abs/2011.01984


Solving The Problem
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3 Approaches to dealing with the problem:


1. Only use interpretable ML. 


- Not Ideal. Loss in performance AND you lose the opportunity to learn new physics.


2. Modify Black Box to be interpretable


- Disadvantages: Captures “most” information but not all. 


- Complex to design & modify.


- Example: Microsoft Research - Intelligible Machine Learning Models for HealthCare


3. [Our Solution] -> Use the Black Box and map it’s solution to a human readable space


- Take full advantage of your models performance


- Use any ML method you want. DNN, SVM, etc. 

Solving the Black Box Problem

 We’ve established a problem with Black Box solutions. How do we fix it? 
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- What do we need to map learned information to a human readable space?


(1) A LL solution that performs better than the HL 


✓We have this from our CNN on jet images.


(2) A “human readable” space of HL variables.


(3) A metric for mapping the LL solution into those HL variables.

Mapping ML to a Human Readable Space

CNN

f(x)

f(x, x′￼, y)

h(x
)

f(x
, g

(h
(x,

y),
x′￼,

z)

f(x
, f(

h(x
, y)

, x′
￼, z)

h(x)

f(x, g(h(x, y), x′￼, z)

g(x, f(x)

f(x, f(h(x, y), x′￼, z)

High-
dimensional


features

Learned 
solutions

Comprehensive human-
interpretable function space

Metric
New 

Physics!(1)

(2)

(3)
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Energy Flow Polynomials (EFP): 
Complete linear basis set for jet 
substructure 


The set of EFPs is defined as all 
isomorphic graphs, with pT and 
position (θ) as defined below

Piece 2 - the Engineered Space of Human-Interpretable Variables

Examples

=
N

∑
a

N

∑
b

zazbθab

=
N

∑
a

N

∑
b

N

∑
c

N

∑
d

N

∑
e

zazbzczdzeθ2
acθbdθbeθcd

Graph components

a b

a b

=
N

∑
a

za

= θab

= (θab)2

Node/Vertex:

Edges:

Multiple Edges

za = pκ
T,a

θab = (Δη2
ab + Δφ2

ab)β/2

Komiske, P. T., Metodiev, E. M., & Thaler, J. (2017, December 19). Energy flow polynomials: A complete linear basis for jet substructure.

zi =
pκ

T,i

∑i pT,i

θij = (Δy2
ij + Δ2

ij)
β/2

For every set of graphs, we can also modify 
2 parameters (Κ,β)



November 13, 2020

Physicists Learning from Machines Learning Seminar Talk

18

- We don’t want to use ROC/AUC. 


- ROC describes training performance, not 
decision making similarity.


- ROC compares True Positive Rates at 
different thresholds of False Positive Rates.


- But it’s the right idea! We want:


- For 2 neural networks, at different 
thresholds of NN output, what is the 
relative similarity of the decision 
surfaces of each?

Piece 3 - ROC Is the Right Way To Approach It, but We Need To Modify It.

ROC/AUC is analogous to our process, but 


Replacing TP/FP comparisons with decision boundaries
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We want an equivalent to ROC for 2 discriminating functions 
[f(x) and g(x)]. Classification decision of two functions at 

different thresholds.

Piece 3 - Average Decision Ordering (ADO)

DO(x, x′￼) = H [( f(x) − f(x′￼)) ⋅ (g(x) − g(x′￼))]

Step 1: Decision Ordering

For points from signal and background (x and x’), we compare 
how each function maps those points relative to one another.

x’

x

x’

x
f(x)

f(x’)
x’

x

x

x’
g(x)

g(x’)

(+) (-)

Dissimilar Orderings

x’

x

x’

x
f(x)

f(x’) x’

x

X’

xg(x)

g(x’)

(+) (+)

Similar Orderings

x’

x

x

X’

f(x)

f(x’) x’

x

x

x’g(x)

g(x’)

(-) (-)

Heaviside(x)

Similar Orderings → +1

Dissimilar Orderings → 0
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Piece 3 - Average Decision Ordering (ADO)

Step 2: Average

Sum over all combinations of signal/

background decision orderings

ADO′￼= ∑ DO(x, x′￼)

Step 3

Invert averages less than 0.5 (The 

decision function can be inverted to 
make the opposite/correct decisions)

ADO = 1 − ADO

6

A. Boosted Boson Classification

Massive objects produced at the LHC often have
enough transverse momentum that their decay products
become collimated. For an object with a hadronic decay
mode, such as a W boson decaying to a quark-antiquark
pair (W ! qq̄0), the resulting jet in the detector consists
of two clusters of energy, one from each of the fragment-
ing quarks. The substructure of these jets is distinct from
those that arise from the fragmentations of a single hard
quark or gluon. Identification of jets with nontrivial sub-
structure has become an essential tool for probing the
nature of collisions at the LHC [21, 45–56]

There are many di↵erent ways to represent the infor-
mation in a jet. At the most fundamental level, a jet is
variable-length collection of four-vectors with associated
particle properties, motivating set-based ML tools [69–
74]. Another popular approach is to describe a jet as a
grid of calorimeter cells with energy depositions, giving
rise to a “jet image” [19, 75]. In any of these low-level
representations, the jet data is high dimensional. This
motivates the development of HL observables that intelli-
gently summarize the low-level information to reduce the
e↵ective dimensionality of the task. Physicists have engi-
neered numerous HL observables tasks that incorporate
domain knowledge about jet formation (see Refs. [49, 57–
62, 76–83] for an incomplete list). Typical usage is to
apply cuts on one or more of these HL observables, or to
combine several of them using a shallow ML classifier.

In the context of jet classification, ML tools based on
low-level inputs have outperformed traditional strategies
based on HL observables [84]. Of course, the HL ob-
servables themselves are just function of the low-level in-
puts, so it should be possible to find a large enough set
of physics-motivated HL observables that can match the
performance of these ML classifiers [85–87]. This is in-
deed the intuition behind the guided strategy in Sec. II,
where the goal is to leverage a black-box ML method to
identify the most e↵ective HL observables.

Our case study is based on the same datasets as
Ref. [20]. These datasets correspond to

p
s = 14TeV

proton-proton collision, where hard scattering and res-
onance decay were generated using MadGraph 5
v2.2.3 [88], showering and hadronization were generated
with Pythia v6.426 [89], and the response of the de-
tectors was simulated with Delphes v3.2.0 [90]. The
boosted W signal process is diboson production (pp !
W+W�), which yields two fat jets each with 2-prong
substructure. The background process is QCD dijet
production (pp ! qq, qg, gg), which typically yields 1-
prong jets. These samples do not include contamina-
tion from pileup (multiple proton-proton collision per
beam crossing). Jets are clustered using the anti-kt algo-
rithm [91] with radius parameter R = 1.2, using Fast-
Jet 3.1.2 [92]. The dataset contains 5⇥106 events, split
equally between signal and background. Following the
approach in Ref. [20], each jet is pixelated into a 32⇥ 32
grid in the rapidity-azimuth plane, and a jet image is

Observable AUC ADO[CNN,Obs.]

Mjet 0.898± 0.004 0.807
C

�=1
2 0.660± 0.006 0.584

C
�=2
2 0.604± 0.007 0.548

D
�=1
2 0.790± 0.005 0.743

D
�=2
2 0.807± 0.005 0.762

⌧
�=1
2 0.662± 0.006 0.600
6HL 0.9504± 0.0002 0.971
CNN 0.9531± 0.0002 1.000
7HLblack-box 0.9528± 0.0003 0.971

TABLE I. Classification performance of the six HL observ-
ables studied in Ref. [20], as well as a 6HL joint classifier.
The six HL observables face a small but significant perfor-
mance gap compared to the benchmark CNN. As discussed
later in Sec. IVA, this performance gap is bridged by a sev-
enth feature discovered using our black-box guided strategy.
The uncertainty on the AUC is computed from 1 standard
deviation of 10-fold cross-validation. The decision similarity
(ADO) to the benchmark CNN is also shown. Details of the
NN architectures are provided in App. A.

formed from the transverse momentum (pT) deposits in
each cell. The jet image is then trimmed [93], where
subjets of radius Rsub = 0.2 are discarded if their pT is
less than 3% of the original jet. The final jet selection
takes jets with trimmed momentum ptrim

T
2 [300, 400]

GeV within the rapidity range |⌘| < 5.0. While impor-
tant jet information is lost by pixelation and trimming,
we include these steps in our analysis in order to perform
an apples-to-apples comparison to Ref. [20].
The trimmed jet’s constituents are used to compute six

HL jet substructure observables: the trimmed jet mass
(Mjet), four ratios of energy correlation functions (C�=1

2
,

C�=2

2
, D�=1

2
, D�=2

2
) [60, 62], and theN -subjettiness ratio

(⌧�=1

21
) [58, 59]. These observables are well-established in

the context of boosted W classification, including studies
at ATLAS [94, 95] and CMS [96]. The W boson classi-
fication performance of these six HL observables is sum-
marized in Table I. The trimmed jet mass is the most
powerful single observable, since the 80.4 GeV mass peak
is a characteristic feature of boosted W bosons.
We can use the ADO from Eq. (3) to gain additional in-

sight into these six HL observables. In Fig. 2, we assess
the pairwise ADO between each of the HL observables
considered. The observable pairs that make the most
similar decisions (i.e. ADO ! 1) are C�=1

2
with C�=2

2

and D�=1

2
with D�=2

2
. This is expected since these ob-

servables have relatively similar structures except for the
choice of � coe�cient, which controls the weighting of an-
gular information within the jets. These pairs also have
similar AUC values, as seen in Table I, since pairs that
make common classification decisions should exhibit sim-
ilar classification power. Comparing the AUC and ADO
values provides a more detailed picture about the degree
of correlation in classification.
The observable pairs that make the least similar deci-

 AUC of 6HL Observables 

 ADO similarity of pairs of  HL Observables 

- Similar performance (AUC) is not equivalent to similar 
decision making.


- Example: Energy Correlation C2B1 & C2B2 are 
similar. DNN with C2B1 makes BETTER decisions 
than with C2B2


- Traditional HL variables are not an “orthogonal” to 
one another. They share mutual information.
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How To Find New Jet Substructure - Guided Iteration by ADO

- 3 Components


1. CNN(LL): Low Level Model


2. DNN(HL): Initial High Level Observables (i.e. Mjet, n-subjettiness, etc)


3. EFP: Candidate EFPs


- Steps in the algorithm:


1. (pass 0): Train a NN on initial HL variables DNN(HL). 


2. Generate a randomized set of signal/background pairs from the data.


3. Isolate the “Differently Ordered” subset of sig/bkg pairs. 


i.e. what pairs of events do DNN(HL) and CNN(LL) make different decisions?


4. From the “Differently Ordered” subset, find EFP with the maximum ADO with 
the CNN(LL) 


1. i.e. EFPi = MAX[ADO[EFPi, CNN(LL)]]. 


5. Include this EFPi into your HL Observables and return to step 1


DNN(HL) becomes DNN(HL, EFPi)

Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

Differently Ordered Pairs
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What’s the Logic?

- We want to iteratively build a set of useful 
observables.


- Each pass isolates the subspace where HL and LL are 
making different choices.


- We are finding the EFP most suitable to fill the gap


- Subsequent passes, DNN(HL) includes this EFP. The 
next EFP should be looking to fill a “new” gap in 
information.


- Repeat this process until they no longer disagree!

EFP0

CNN(LL)

DNN(HL)

Differently 
Ordered Space
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How many EFPs do we need to find to 
supplement our existing HL variables? 


Just 1!

Guided Iteration - A “Supplemental Search”

AUC are equal but ADO < 1. 


Equal performance but not equivalent 
decision makers.

=
N

∑
a,b,c,d=1

z2
az2

b z2
c z2

d θabθbcθacθad

(κ=2, β=1/2)

 Which EFP did we pick? 

Noteworthy details


- EFP is not Infrared-safe (k ≠ 1)


- β=1/2 is probing small-angle behaviour


- Chromatic #3 graph (probing 2-prong substructure)

6

A. Boosted Boson Classification

Massive objects produced at the LHC often have
enough transverse momentum that their decay products
become collimated. For an object with a hadronic decay
mode, such as a W boson decaying to a quark-antiquark
pair (W ! qq̄0), the resulting jet in the detector consists
of two clusters of energy, one from each of the fragment-
ing quarks. The substructure of these jets is distinct from
those that arise from the fragmentations of a single hard
quark or gluon. Identification of jets with nontrivial sub-
structure has become an essential tool for probing the
nature of collisions at the LHC [21, 45–56]

There are many di↵erent ways to represent the infor-
mation in a jet. At the most fundamental level, a jet is
variable-length collection of four-vectors with associated
particle properties, motivating set-based ML tools [69–
74]. Another popular approach is to describe a jet as a
grid of calorimeter cells with energy depositions, giving
rise to a “jet image” [19, 75]. In any of these low-level
representations, the jet data is high dimensional. This
motivates the development of HL observables that intelli-
gently summarize the low-level information to reduce the
e↵ective dimensionality of the task. Physicists have engi-
neered numerous HL observables tasks that incorporate
domain knowledge about jet formation (see Refs. [49, 57–
62, 76–83] for an incomplete list). Typical usage is to
apply cuts on one or more of these HL observables, or to
combine several of them using a shallow ML classifier.

In the context of jet classification, ML tools based on
low-level inputs have outperformed traditional strategies
based on HL observables [84]. Of course, the HL ob-
servables themselves are just function of the low-level in-
puts, so it should be possible to find a large enough set
of physics-motivated HL observables that can match the
performance of these ML classifiers [85–87]. This is in-
deed the intuition behind the guided strategy in Sec. II,
where the goal is to leverage a black-box ML method to
identify the most e↵ective HL observables.

Our case study is based on the same datasets as
Ref. [20]. These datasets correspond to

p
s = 14TeV

proton-proton collision, where hard scattering and res-
onance decay were generated using MadGraph 5
v2.2.3 [88], showering and hadronization were generated
with Pythia v6.426 [89], and the response of the de-
tectors was simulated with Delphes v3.2.0 [90]. The
boosted W signal process is diboson production (pp !
W+W�), which yields two fat jets each with 2-prong
substructure. The background process is QCD dijet
production (pp ! qq, qg, gg), which typically yields 1-
prong jets. These samples do not include contamina-
tion from pileup (multiple proton-proton collision per
beam crossing). Jets are clustered using the anti-kt algo-
rithm [91] with radius parameter R = 1.2, using Fast-
Jet 3.1.2 [92]. The dataset contains 5⇥106 events, split
equally between signal and background. Following the
approach in Ref. [20], each jet is pixelated into a 32⇥ 32
grid in the rapidity-azimuth plane, and a jet image is

Observable AUC ADO[CNN,Obs.]

Mjet 0.898± 0.004 0.807
C

�=1
2 0.660± 0.006 0.584

C
�=2
2 0.604± 0.007 0.548

D
�=1
2 0.790± 0.005 0.743

D
�=2
2 0.807± 0.005 0.762

⌧
�=1
2 0.662± 0.006 0.600
6HL 0.9504± 0.0002 0.971
CNN 0.9531± 0.0002 1.000
7HLblack-box 0.9528± 0.0003 0.971

TABLE I. Classification performance of the six HL observ-
ables studied in Ref. [20], as well as a 6HL joint classifier.
The six HL observables face a small but significant perfor-
mance gap compared to the benchmark CNN. As discussed
later in Sec. IVA, this performance gap is bridged by a sev-
enth feature discovered using our black-box guided strategy.
The uncertainty on the AUC is computed from 1 standard
deviation of 10-fold cross-validation. The decision similarity
(ADO) to the benchmark CNN is also shown. Details of the
NN architectures are provided in App. A.

formed from the transverse momentum (pT) deposits in
each cell. The jet image is then trimmed [93], where
subjets of radius Rsub = 0.2 are discarded if their pT is
less than 3% of the original jet. The final jet selection
takes jets with trimmed momentum ptrim

T
2 [300, 400]

GeV within the rapidity range |⌘| < 5.0. While impor-
tant jet information is lost by pixelation and trimming,
we include these steps in our analysis in order to perform
an apples-to-apples comparison to Ref. [20].
The trimmed jet’s constituents are used to compute six

HL jet substructure observables: the trimmed jet mass
(Mjet), four ratios of energy correlation functions (C�=1

2
,

C�=2

2
, D�=1

2
, D�=2

2
) [60, 62], and theN -subjettiness ratio

(⌧�=1

21
) [58, 59]. These observables are well-established in

the context of boosted W classification, including studies
at ATLAS [94, 95] and CMS [96]. The W boson classi-
fication performance of these six HL observables is sum-
marized in Table I. The trimmed jet mass is the most
powerful single observable, since the 80.4 GeV mass peak
is a characteristic feature of boosted W bosons.
We can use the ADO from Eq. (3) to gain additional in-

sight into these six HL observables. In Fig. 2, we assess
the pairwise ADO between each of the HL observables
considered. The observable pairs that make the most
similar decisions (i.e. ADO ! 1) are C�=1

2
with C�=2

2

and D�=1

2
with D�=2

2
. This is expected since these ob-

servables have relatively similar structures except for the
choice of � coe�cient, which controls the weighting of an-
gular information within the jets. These pairs also have
similar AUC values, as seen in Table I, since pairs that
make common classification decisions should exhibit sim-
ilar classification power. Comparing the AUC and ADO
values provides a more detailed picture about the degree
of correlation in classification.
The observable pairs that make the least similar deci-

Sig/Bkg separation is 
low in differently 

ordered space but the 
gap is still filled

Existing HL  
+1 extra EFP

Existing HL
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Alternate Approach: Start with the fewest HL observables possible (Jet Mass and Jet pT) and ask 
the process to choose ALL of our EFPs from scratch. 

Guided Iteration - A “Black Box” Approach

13

Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

is not surprising that the EFPs identified here are qual-
itatively di↵erent from the ones in Sec. IV. The physics
interpretation of these various EFPs will be presented in
Sec. VD.

B. Comparison to Brute Force Search

An alternative approach to maximizing ADO is to per-
form a brute-force search through the space of EFPs to
find the set that maximally matches the decisions of the
CNN. This is much more computationally expensive than
the black-box guided strategy, but it has the potential
to converge to a smaller number of EFPs if there are
important correlations between the observables. In an
absolute brute force search, one would construct all pos-
sible sets of EFPs, and evaluate the ADO of each relative
to the CNN; given the number of graphs and combina-
tions, this would be completely intractable. Instead, we
attempt an iterative greedy algorithm, which incremen-
tally builds the EFP set. This is still computationally
expensive, but (borderline) tractable.

We again start from the jet pT and Mjet information,
but immediately train a joint classifier using each of the
EFPs as an input:

NN
h
pT,Mjet,EFP

i
. (32)

We then select the EFP that yields the largest ADO with
the CNN, evaluated on the full training set.In the first
iteration, we select the EFP via:

EFP1 = argmax
EFP2S

ADO
h
CNN,NN

⇥
pT,Mjet,EFP

⇤i

Xall

.

(33)
We repeat this procedure in each subsequent iteration,
choosing the EFP that yields the largest improvement in

ADO when combined with the previous observables:

EFPn = argmax
EFP2S

ADO
h
CNN,NN

⇥
. . . ,EFPn�1,EFP

⇤i

Xall

.

(34)
The key di↵erence from the black-box guided strategy is
that the joint classifier is trained before evaluating the
ADO, and the ADO is evaluated on the full training set,
instead of the just the di↵erently-ordered subset.
The primary computational cost of the brute force ap-

proach comes from training the joint classifier appearing
in Eq. (34), which combines each EFP with the current
set of observables. This has to be done for each EFP
under consideration, and it is too computationally ex-
pensive to examine all 7,545 EFP graphs over multiple
iterations. Therefore, we only consider a subset of graphs
at each iteration, which means there is no guarantee the
brute force method will perform better than the black-
box guided strategy. For our purposes, our subset con-
sists of the 54 connected graphs of degree d  5 and (,�)
choices of  = [ 1

2
, 1, 2] and � = [ 1

2
, 1, 2]. This reduces our

original search space down to a more manageable 486
choices.
The results from this brute force procedure are shown

in Fig. 5 in terms of the ADO and AUC values after each
iteration. In the first few iterations, the AUC and ADO
values are higher than for black-box guiding, achieving
a comparable performance to the original 6HL result af-
ter the inclusion of a third EFP. The brute force process
continues until it matches the CNN performance with
6 EFPs (8 HL inputs total). As one would expect, the
brute force approach performs well as it is e↵ectively try-
ing every possible combination of inputs and selecting the
best. This computational cost, however, must be weighed
against the marginal decrease in the number of EFPs re-
quired to match the CNN as well as the need to restrict
the input space prior to exploring the performance. As
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Iteration (n) EFP  � Chrom # ADO[EFP,CNN]Xn�1 AUC[EFP] ADO[HLNn,CNN]Xall AUC[HLNn]

0 Mjet + pT – – – – – 0.9259 0.9119

1 2 1
2 2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2 2 0.5274 0.8464 0.9712 0.9487

5 �1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2 4 0.5382 0.7678 0.9734 0.9523

7 �1 1
2 2 0.5561 0.5957 0.9741 0.9528

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just
pT and Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the di↵erently-ordered
subspace Xn�1.

is not surprising that the EFPs identified here are qual-
itatively di↵erent from the ones in Sec. IV. The physics
interpretation of these various EFPs will be presented in
Sec. VD.

B. Comparison to Brute Force Search

An alternative approach to maximizing ADO is to per-
form a brute-force search through the space of EFPs to
find the set that maximally matches the decisions of the
CNN. This is much more computationally expensive than
the black-box guided strategy, but it has the potential
to converge to a smaller number of EFPs if there are
important correlations between the observables. In an
absolute brute force search, one would construct all pos-
sible sets of EFPs, and evaluate the ADO of each relative
to the CNN; given the number of graphs and combina-
tions, this would be completely intractable. Instead, we
attempt an iterative greedy algorithm, which incremen-
tally builds the EFP set. This is still computationally
expensive, but (borderline) tractable.

We again start from the jet pT and Mjet information,
but immediately train a joint classifier using each of the
EFPs as an input:

NN
h
pT,Mjet,EFP

i
. (32)

We then select the EFP that yields the largest ADO with
the CNN, evaluated on the full training set.In the first
iteration, we select the EFP via:
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Xall

.

(33)
We repeat this procedure in each subsequent iteration,
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ADO when combined with the previous observables:
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The key di↵erence from the black-box guided strategy is
that the joint classifier is trained before evaluating the
ADO, and the ADO is evaluated on the full training set,
instead of the just the di↵erently-ordered subset.
The primary computational cost of the brute force ap-

proach comes from training the joint classifier appearing
in Eq. (34), which combines each EFP with the current
set of observables. This has to be done for each EFP
under consideration, and it is too computationally ex-
pensive to examine all 7,545 EFP graphs over multiple
iterations. Therefore, we only consider a subset of graphs
at each iteration, which means there is no guarantee the
brute force method will perform better than the black-
box guided strategy. For our purposes, our subset con-
sists of the 54 connected graphs of degree d  5 and (,�)
choices of  = [ 1

2
, 1, 2] and � = [ 1

2
, 1, 2]. This reduces our

original search space down to a more manageable 486
choices.
The results from this brute force procedure are shown

in Fig. 5 in terms of the ADO and AUC values after each
iteration. In the first few iterations, the AUC and ADO
values are higher than for black-box guiding, achieving
a comparable performance to the original 6HL result af-
ter the inclusion of a third EFP. The brute force process
continues until it matches the CNN performance with
6 EFPs (8 HL inputs total). As one would expect, the
brute force approach performs well as it is e↵ectively try-
ing every possible combination of inputs and selecting the
best. This computational cost, however, must be weighed
against the marginal decrease in the number of EFPs re-
quired to match the CNN as well as the need to restrict
the input space prior to exploring the performance. As

DNN(HL) 
performance 
improves on every 
pass

We can match 
performance of the LL 
network with purely 
“learned” observables

EFPs with poor individual performance contribute in a mixed dataset
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Learning From the EFPs

Pass Graph (κ, β) Interpretation

1 (2, 1/2)

- First EFP is κ=2. This matches the Supplemental Search (IRC Unsafe)

- Chromatic #2 Mass (same as Jet Mass) which probes 1-prong 

substructure

- 5-point Correlator (different from Jet Mass, a 2-point correlator)

- β=1/2 (unlike mass with β=2) probes small-angle radiation 

2 (0, 2)
- Second EFP is κ=0. Also IRC Unsafe.

- Also Chromatic #2 - Reinforces importance of 1-prong substructure.

- (κ=0, β=2) probes soft, wide-angle radiation.

3 (0, -)

- Equivalent to constituent multiplicity. This is an existing substructure 
observable that we simply weren’t using in HL


- Reinforces controlling composition of quark/gluon is important for W 
tagging

4 (1, 1/2)
- First IRC Safe information

- Another Chromatic #2 graph (still probing 1-prong substructure)

- Small angle radiation


Additional Observations


- 5 out of 7 EFPs (including the 
earliest choices) are IRC 
unsafe.


- 1-prong substructure is a 
strong predictor despite the 
fact the signal is 2-prong


- First EFP not probing 1-prong 
substructure is pass 6 (c=4)


- Although matching  the 
CNN(LL) and Supplemental 
Search, the EFP choices are 
VERY different and 
“unconventional”

Black Box Guided EFP Selections (1-4)
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- Some reasonable questions:


- “If the information exists in the EFPs, why not just 
try combinations of them?”


- “Why choose EFPs based on the CNN? Why not 
let ground truth (i.e. labels on your data) be your 
guide?”


- We compare these other methods:


1. Black-box Guided: Guided Iteration by ADO 
with CNN(LL) as the benchmark. (our approach)


2. Brute Force: Try every combination of EFP in a 
DNN. (Very inefficient)


3. Truth Guided: Guided Iteration by ADO with 
ground truth as the benchmark. (Note: this is 
equivalent to selecting EFPs based on AUC 
performance)

Guided Iteration - A “Black Box” Approach
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- Truth-Guided can’t recover the LL performance. 


- Truth Guided attempts to optimize to truth labels 
even when that information isn’t accessible in the 
data


- The CNN is optimizing explicitly for performance 
and reducing/expanding the space for us. We are 
trying to piggy-back on that problem solving


- Brute Force gets good performance (as you would 
expect just trying them all) but is extremely 
inefficient. 


- 1 EFP selection from Brute Force takes longer 
than the entire guided search.


- Hyperparameter optimization is common. Full 
brute force must be re-run for every change to 
the NN.

Guided Iteration - Results
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- As ML methods increase in complexity, they become more opaque. 


- Opaque Black Box learning shouldn’t be viewed as having “learned” the data in a meaningful 
sense. The results can’t be validated or understood. We can’t inspect the Black Box. We can’t 
measure systematic uncertainties of the Black Box.


- Where possible, use interpretable models that match opaque solutions. 


- When equivalent performance is not possible with interpretable models, a Black Box can tell 
you how much performance is possible but an interpretable approach (like Guided Iteration by 
ADO) should be used to try and recover that information.


- Answers we don’t understand aren’t really “answers” at all.    

Overview/Discussion



Future & Related Work
Backup Slides
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Motivation?


- Dark Matter is one of the most promising 
BSM searches. This will be a large focus 
of LHC run 3.


- Primarily, current searches at the LHC are 
tuned for identifying WIMPs (Weakly 
Interacting Massive Particle)


- As a result, LHC searches primarily look 
for:


(a) Monojets as a sign of MET from a 
WIMP.


(b) mono-W, mono-Z or mono-photon 
in excess of SM background.

What’s Next? Dark Matter of Course!

Shedding Light on Dark Matter at Colliders 5

3. Model-Independent DM Production at the LHC

Collider searches for dark matter are highly complementary to direct2–10,49–53 and
indirect2–10,51–54 DM detection methods. The main advantage of collider searches
is that they do not su↵er from astrophysical uncertainties and that there is no lower
limit to the DM masses to which they are sensitive.

The leading generic diagrams responsible for DM production55–57 at hadron
colliders, as shown in Fig. 3, involve the pair-production of WIMPs plus the initial-
or final-state radiation (ISR/FSR) of a gluon, photon or a weak gauge boson Z, W .
The ISR/FSR particle is necessary to balance the two WIMPs’ momentum, so that
they are not produced back-to-back resulting in negligible E

miss
T . Therefore the

search is based on selecting events high-Emiss
T events, due to the WIMPs, and a

single jet, photon or boson candidate. A single-jet event from the CMS experiment
is visible in Fig. 4.

(a) qq̄ ! �� + g (b) qq̄ ! �� + �, Z,W

Fig. 3. WIMP production at hadron colliders in association with (a) a jet or (b) a photon or a
Z or W boson.

Fig. 4. The cylindrical view of a monojet candidate event (pjetT = 574.2 GeV, Emiss
T = 598.3 GeV)

from the CMS experiment.58

Mitsou, V. A. (2013, October 3). Shedding Light on Dark Matter at Colliders. arXiv.org. http://doi.org/10.1142/S0217751X13300524
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Instead of WIMPS, What About a Dark Sector?

Standard Model Mediator Dark Sector

γ, g, q, …

X, Zʹ, h, …

γʹ, gʹ, qʹ, …

π, ρ, p, … πd, ρd, pd, …

SU(3) ⨉ SU(2) ⨉ U(1)

SU(N)’

or


SU(N)’ ⨉ U(1)’

or

….

dark parton → shower → hadronization → dark meson decay back to SM

Suppose DM is not the result of a single hidden particle


What if there is an entire dark sector with similar QCD/SM dynamics?
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Dark Jets - the Panoply

There are a variety of different dark jets that can be “observed” which yield different combinations of stable/
visible jets and/or missing transverse energy. For our analysis tools, we are interested in investigating fractional 
decay (Semi-visible jets). In this dark sector, a portion of dark sector parsons decay to stable SM jets and the 
remainder to dark jets. Yielding an unexpected jet + MET. 


However, in the case of semi-visible jets, the observed QCD jet and the MET are closely aligned and current LHC 
vetos exclude much of this region.

Stable dark jet

MET

Long lived dark jets Rapid decayFractional decay


(Semi-visible jet)

Jet + displaced tracks Jet + MET

Dark Jet

Visible Jet

Dark Jet

Visible Jet

Dark Jet

Visible Jet

Dark Jet

Visible Jet
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However, SVJ are all but ruled out from the search since the LHC data veto requires a minimum 
MET/jet angular separation. 


This eliminates QCD background contamination but also would exclude semi-visible jets.

Semi-Visible Jets Are Trimmed Out
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FIG. 1: (left) The distribution of transverse missing energy �ET for the QCD background (solid blue), as well as the semi-visible
jet (dashed red) and WIMP (dotted green) examples. (right) The distribution of �� ⌘ min {��j1�ET ,��j2�ET }, where j1,2 are
the two hardest jets.

removed. This comes at the expense of an unsuppressed
QCD multijet background, which must be eliminated us-
ing other techniques. In this Letter, we focus on the case
where the dark sector is accessed via a heavy resonance.
In such scenarios, one can take advantage of structure
in the transverse mass—calculated using the final-state
jets and �ET—to distinguish the signal from QCD. The
strategy employed is similar to others proposed for semi-
visible Higgs decays [38].

We now introduce an example Hidden Valley [7] model
that will enable us to analyze the LHC sensitivity for
semi-visible jets. This model is presented for illustra-
tion and concreteness; semi-visible jets will be among
the LHC signatures for a vast class of dark-sector theo-
ries. The messenger sector is described by a simple phe-
nomenological model for a TeV-scale U(1)0 gauge boson.
The new leptophobic Z

0 gauge boson couples to the SM
baryon current Jµ

SM:

L � �
1

4
Z

0µ⌫
Z

0
µ⌫ �

1

2
M

2
Z0 Z

0
µ Z

0µ
� g

SM
Z0 Z

0
µ J

µ
SM. (1)

Note that the Z
0 is treated as a Stueckelberg field—

the Higgs sector has been neglected as it is not relevant
for the LHC phenomenology discussed below; the addi-
tional matter needed to render the U(1) of baryon num-
ber anomaly free is also ignored.

The dark sector is an SU(2)d gauge theory with cou-
pling ↵d and two fermionic quark flavors �i = �1,2 with
masses Mi. The dark quark coupling to the Z

0 is g
d
Z0 .

In general, the couplings gdZ0 and g
SM
Z0 do not have to be

comparable; we focus on the case where g
d
Z0 is large so

that the Z
0 decays frequently to the dark sector.

The SU(2)d confines at a scale ⇤d ⌧ MZ0 . A QCD-like
dark shower occurs when M

2
i ⇠ ⇤2

d so that many dark
gluons and quarks are produced, which subsequently
hadronize. Some of these dark hadrons are stable, while
others decay back to the SM via an o↵-shell Z 0. The
detailed spectrum of the dark hadrons depends on non-

perturbative physics. Nonetheless, some properties of
the low-energy states can be inferred from symmetry
arguments. There are two accidental symmetries: a
dark-isospin number U(1)1�2 and a dark-baryon num-
ber U(1)1+2, where “1” and “2” refer to the �i flavor
index. For example, the mesons �†

1�1 and �†
2�2 are not

charged under either of these symmetries, and are thus
unstable. The other mesons (�1�

†
2, �

†
1�2) and baryons

(�1�2, �
†
1�

†
2) are charged under U(1)1�2 and U(1)1+2,

respectively, and are stable.

The spin of the dark mesons is also important. Sim-
ilar to the ⌘b (⌘c) and ⌥ (J/ ) of the bottom (charm)
system, the pseudoscalar and vector mesons should be
degenerate. By naive degree-of-freedom counting, the
vector mesons are produced roughly three times as often
as the pseudoscalar mesons [29]. This impacts the phe-
nomenology as the pseudoscalar decay is suppressed by
a mass insertion, unlike the vector case. Therefore, the
pseudoscalar decays are dominated by b-quarks and are,
in general, more displaced than the vector decays. The
search strategy discussed below does not rely on b-tags or
displaced tracks; it may be possible to take advantage of
the pseudoscalar meson decays with a more sophisticated
analysis.

Despite the myriad of possibilities for the dark sector,
only certain parameters have a direct impact on the jet
observables and missing transverse energy. The strength
of the dark shower, parametrized by ↵d, plays a critical
role. The coupling ↵d controls how many dark hadrons
are emitted in the shower as well as their pT distribu-
tions, which has a direct and measurable impact on the
jet observables. In addition, the mass scale of the dark
quarks a↵ects the jet masses.

The number of dark-matter particles produced in the
shower impacts �~ET . This e↵ect can be parametrized as

rinv ⌘

⌧
# of stable hadrons

# of hadrons

�
. (2)
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removed. This comes at the expense of an unsuppressed
QCD multijet background, which must be eliminated us-
ing other techniques. In this Letter, we focus on the case
where the dark sector is accessed via a heavy resonance.
In such scenarios, one can take advantage of structure
in the transverse mass—calculated using the final-state
jets and �ET—to distinguish the signal from QCD. The
strategy employed is similar to others proposed for semi-
visible Higgs decays [38].

We now introduce an example Hidden Valley [7] model
that will enable us to analyze the LHC sensitivity for
semi-visible jets. This model is presented for illustra-
tion and concreteness; semi-visible jets will be among
the LHC signatures for a vast class of dark-sector theo-
ries. The messenger sector is described by a simple phe-
nomenological model for a TeV-scale U(1)0 gauge boson.
The new leptophobic Z

0 gauge boson couples to the SM
baryon current Jµ
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Note that the Z
0 is treated as a Stueckelberg field—

the Higgs sector has been neglected as it is not relevant
for the LHC phenomenology discussed below; the addi-
tional matter needed to render the U(1) of baryon num-
ber anomaly free is also ignored.

The dark sector is an SU(2)d gauge theory with cou-
pling ↵d and two fermionic quark flavors �i = �1,2 with
masses Mi. The dark quark coupling to the Z

0 is g
d
Z0 .

In general, the couplings gdZ0 and g
SM
Z0 do not have to be

comparable; we focus on the case where g
d
Z0 is large so

that the Z
0 decays frequently to the dark sector.

The SU(2)d confines at a scale ⇤d ⌧ MZ0 . A QCD-like
dark shower occurs when M

2
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d so that many dark
gluons and quarks are produced, which subsequently
hadronize. Some of these dark hadrons are stable, while
others decay back to the SM via an o↵-shell Z 0. The
detailed spectrum of the dark hadrons depends on non-

perturbative physics. Nonetheless, some properties of
the low-energy states can be inferred from symmetry
arguments. There are two accidental symmetries: a
dark-isospin number U(1)1�2 and a dark-baryon num-
ber U(1)1+2, where “1” and “2” refer to the �i flavor
index. For example, the mesons �†

1�1 and �†
2�2 are not

charged under either of these symmetries, and are thus
unstable. The other mesons (�1�
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†
1�2) and baryons
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†
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2) are charged under U(1)1�2 and U(1)1+2,

respectively, and are stable.

The spin of the dark mesons is also important. Sim-
ilar to the ⌘b (⌘c) and ⌥ (J/ ) of the bottom (charm)
system, the pseudoscalar and vector mesons should be
degenerate. By naive degree-of-freedom counting, the
vector mesons are produced roughly three times as often
as the pseudoscalar mesons [29]. This impacts the phe-
nomenology as the pseudoscalar decay is suppressed by
a mass insertion, unlike the vector case. Therefore, the
pseudoscalar decays are dominated by b-quarks and are,
in general, more displaced than the vector decays. The
search strategy discussed below does not rely on b-tags or
displaced tracks; it may be possible to take advantage of
the pseudoscalar meson decays with a more sophisticated
analysis.

Despite the myriad of possibilities for the dark sector,
only certain parameters have a direct impact on the jet
observables and missing transverse energy. The strength
of the dark shower, parametrized by ↵d, plays a critical
role. The coupling ↵d controls how many dark hadrons
are emitted in the shower as well as their pT distribu-
tions, which has a direct and measurable impact on the
jet observables. In addition, the mass scale of the dark
quarks a↵ects the jet masses.

The number of dark-matter particles produced in the
shower impacts �~ET . This e↵ect can be parametrized as
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removed. This comes at the expense of an unsuppressed
QCD multijet background, which must be eliminated us-
ing other techniques. In this Letter, we focus on the case
where the dark sector is accessed via a heavy resonance.
In such scenarios, one can take advantage of structure
in the transverse mass—calculated using the final-state
jets and �ET—to distinguish the signal from QCD. The
strategy employed is similar to others proposed for semi-
visible Higgs decays [38].

We now introduce an example Hidden Valley [7] model
that will enable us to analyze the LHC sensitivity for
semi-visible jets. This model is presented for illustra-
tion and concreteness; semi-visible jets will be among
the LHC signatures for a vast class of dark-sector theo-
ries. The messenger sector is described by a simple phe-
nomenological model for a TeV-scale U(1)0 gauge boson.
The new leptophobic Z

0 gauge boson couples to the SM
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Note that the Z
0 is treated as a Stueckelberg field—

the Higgs sector has been neglected as it is not relevant
for the LHC phenomenology discussed below; the addi-
tional matter needed to render the U(1) of baryon num-
ber anomaly free is also ignored.

The dark sector is an SU(2)d gauge theory with cou-
pling ↵d and two fermionic quark flavors �i = �1,2 with
masses Mi. The dark quark coupling to the Z

0 is g
d
Z0 .

In general, the couplings gdZ0 and g
SM
Z0 do not have to be

comparable; we focus on the case where g
d
Z0 is large so

that the Z
0 decays frequently to the dark sector.

The SU(2)d confines at a scale ⇤d ⌧ MZ0 . A QCD-like
dark shower occurs when M
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d so that many dark
gluons and quarks are produced, which subsequently
hadronize. Some of these dark hadrons are stable, while
others decay back to the SM via an o↵-shell Z 0. The
detailed spectrum of the dark hadrons depends on non-

perturbative physics. Nonetheless, some properties of
the low-energy states can be inferred from symmetry
arguments. There are two accidental symmetries: a
dark-isospin number U(1)1�2 and a dark-baryon num-
ber U(1)1+2, where “1” and “2” refer to the �i flavor
index. For example, the mesons �†
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2) are charged under U(1)1�2 and U(1)1+2,

respectively, and are stable.

The spin of the dark mesons is also important. Sim-
ilar to the ⌘b (⌘c) and ⌥ (J/ ) of the bottom (charm)
system, the pseudoscalar and vector mesons should be
degenerate. By naive degree-of-freedom counting, the
vector mesons are produced roughly three times as often
as the pseudoscalar mesons [29]. This impacts the phe-
nomenology as the pseudoscalar decay is suppressed by
a mass insertion, unlike the vector case. Therefore, the
pseudoscalar decays are dominated by b-quarks and are,
in general, more displaced than the vector decays. The
search strategy discussed below does not rely on b-tags or
displaced tracks; it may be possible to take advantage of
the pseudoscalar meson decays with a more sophisticated
analysis.

Despite the myriad of possibilities for the dark sector,
only certain parameters have a direct impact on the jet
observables and missing transverse energy. The strength
of the dark shower, parametrized by ↵d, plays a critical
role. The coupling ↵d controls how many dark hadrons
are emitted in the shower as well as their pT distribu-
tions, which has a direct and measurable impact on the
jet observables. In addition, the mass scale of the dark
quarks a↵ects the jet masses.

The number of dark-matter particles produced in the
shower impacts �~ET . This e↵ect can be parametrized as

rinv ⌘

⌧
# of stable hadrons

# of hadrons

�
. (2)
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- These LHC vetos are approximately


- Δφ ≥ 0.4 


- MET ≥ 500


- After both cuts


- 70% of WIMP signal remains


- 7% of SVJ signal remains


- Further, jet studies cut on the 
kinematic variable αT > 0.55


- 20% of WIMP signal remains


- 3% of SVJ remains

Semi-Visible Jets Are Trimmed Out

Δφ ≡ min {Δφj1,ET
, Δφj2ET}

M2
T = M2

jj + 2 ( M2
jj + p2

T,jjET − ⃗p T,jj ⋅ ⃗E T)

Assuming the veto is removed/relaxed, transverse 
mass is proposed as a discriminating variable. 

This, however, is the only observable so far tested.


