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• This presentation will cover a fairly complete description of our current Kalman Filter based 

reconstruction algorithm together with some early findings from a Toy Monte Carlo study developed to 

study the performance of said algorithm

• The presentation will be divided into 4 main sections:

➢ Description of what Kinematic Fitting is

➢ Description of what a Kalman Filter is

➢ Description of our own algorithm (T. Junk, DUNE-Doc-13933 https://docs.dunescience.org/cgi-
bin/private/ShowDocument?docid=13933), which is a convolution of a Kalman Filter and a 

Kinematic Fitting algorithm

➢ Early findings from my Toy Monte Carlo study

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13933
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𝑥ℎ𝑥𝑓

(𝑥ℎ, 𝑦ℎ)

𝑓

𝜎𝑦

𝜎𝑥

(𝑥𝑓, 𝑦ℎ)

• A new value for the x coordinate 𝑥𝑓

is calculated as an alternative to the 

measured value 𝑥ℎ

• 𝑥𝑓 is taken such that the weighted 

distance (in terms of 𝜎𝑥 and 𝜎𝑦) 

between the model 𝑓 and the 

measurement  (𝑥ℎ, 𝑦ℎ) is minimal.

• In the limit case where 𝜎𝑦 is very 

large, this is equivalent to using the 

measured 𝑥ℎ

• In the limit case where 𝜎𝑥 is very 

large, this is equivalent to using the 𝑥
from the model (this is the case 

shown in the diagram)
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• Kinematic fitting is an algorithm that updates a measurement within error in the presence of a model 

constraint.

• An example of this sort of fit can be found in https://inspirehep.net/literature/1780811 where  

kinematic fitting has been used in the context of neutrino-induced charged-current (CC) 𝜋0
production on carbon, to improve the neutral pion momentum reconstruction

• For more insights you can consult:

➢ https://www.phys.ufl.edu/~avery/fitting/kinfit_talk1.pdf

➢ http://www-hermes.desy.de/notes/pub/TALK/yaschenk.ColloqGlasgow.pdf

https://inspirehep.net/literature/1780811
https://www.phys.ufl.edu/~avery/fitting/kinfit_talk1.pdf
http://www-hermes.desy.de/notes/pub/TALK/yaschenk.ColloqGlasgow.pdf
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• A Kalman filter is an iterative algorithm which uses a system's physical laws of motion, known control inputs and 

multiple sequential measurements to form an estimate of the system's varying quantities

• At each step of the iteration an estimate of the state of the system is produced as a weighted average of the system's 

predicted state and of the new measurement. The weights are calculated from the covariance.

• The extended Kalman filter expands the Kalman filter technique to non-linear systems

• The models for state transition and measurement can be written as:

𝑠𝑘 = 𝑓 𝑠𝑘−1, 𝑋𝑘−1

• Where 𝑓 is the function of the previous state, 𝑠𝑘−1 , and the free parameter, 𝑋𝑘−1, that provides the current state 𝑠𝑘.

• Note that the measurement vector 𝑚𝑘
ℎ and the state vector 𝑠𝑘 do not necessarily have the same number of 

components

𝑚𝑘
ℎ

STATE VECTOR

MEASUREMENT 

VECTOR
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1. Make a priori predictions for the current step’s state and covariance matrix using the a posteriori best estimate of 

the previous step (i.e. updated using measurement)

𝑠𝑘
− = 𝑓 𝑠𝑘−1

+ , 𝑋𝑘−1

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄

𝐹𝑘−1 = ቤ
𝜕𝑓

𝜕𝑠
𝑠𝑘−1
+ ,𝑋𝑘−1

𝑄

JACOBIAN PROCESS NOISE 

COVARIANCE

STATE VECTOR

COVARIANCE MATRIX

Note: In the first iteration step we use step 0 estimates for the state vector and the covariance matrix (𝑠0, 𝑃0), which 

can be made very roughly 
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2. Calculate the measurement residual and the Kalman Gain

𝑦𝑘 = 𝑚𝑘
ℎ − 𝐻(𝑠𝑘

−)

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇 𝑅 + 𝐻𝑃𝑘

−𝐻𝑇 −1

3. Update the estimate

𝑠𝑘
+ = 𝑠𝑘

− + 𝐾𝑘 𝑦

𝑃𝑘
+ = 1 − 𝐾𝑘𝐻 𝑃𝑘

−

RESIDUAL

KALMAN GAIN

STATE VECTOR

COVARIANCE MATRIX

𝑅

MEASUREMENT 

NOISE COVARIANCE

𝐻

CONVERSION 

MATRIX

Note: the conversion matrix is 

needed to make the dimensions 

of vectors and matrixes turn out 

right. For exemple if 𝑠𝑘
ℎ is a 2-

D vector and 𝑠𝑘
− is 5-D, then H 

would be a 2 × 5 matrix:

𝐻 = (
1 0 0
0 1 0

0 0
0 0

)

Note: in the case 

where R is a null 

matrix 𝑠𝑘
+ = 𝑠𝑘

ℎ

and 𝑃𝑘
+ = 0
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ℎ, 𝑦1
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ℎ
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T. Junk, DUNE-Doc-13933: https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13933

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13933
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𝑑𝑥1

𝑥1
ℎ𝑥1

𝑓

(𝑥1
ℎ, 𝑦1

ℎ)

𝑓

(𝑥0
𝑓
, 𝑦0

𝑓
)

• In our case we use kinematic fitting 

to determine the free parameter step 

𝑑𝑥𝑘
• 𝑑𝑥𝑘 is taken such that a weighted 

distance Δ (in terms of 𝜎𝑥 and 𝜎𝑦 =

𝜎𝑧 = 𝜎𝑦𝑧) between the model 𝑓 and 

the measurement  (𝑥𝑘
ℎ, 𝑦𝑘

ℎ) is 

minimal.

• In the limit case where 𝜎𝑦𝑧 is very 

large, this is equivalent to using the 

measured 𝑥ℎ

• In the limit case where 𝜎𝑥 is very 

large, this is equivalent to using the 

𝑥 from the model (this is the case 

shown in the diagram)

𝜎𝑦

𝜎𝑥

(𝑥1
𝑓
, 𝑦1

ℎ)
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• The quantity minimize in our kinematic fitting is the weighted distance Δ with 𝜎𝑥, 𝜎𝑦 = (0.5𝑐𝑚, 1𝑐𝑚):

Δ(𝑑𝑥𝑘; 𝑥𝑘
ℎ, 𝑦𝑘

ℎ, 𝑧𝑘
ℎ, 𝑥𝑘−1

𝑓
, 𝑦𝑘−1

+ , 𝑧𝑘−1
+ , 𝜆𝑘−1

+ , 𝜙𝑘−1
+ ) =

𝑥𝑘
ℎ − 𝑥𝑘

𝑓

𝜎𝑥

2

+
𝑦𝑘
ℎ − 𝑦𝑘

−

𝜎𝑦𝑧

2

+
𝑧𝑘
ℎ − 𝑧𝑘

−

𝜎𝑦𝑧

2

=
𝑥𝑘
ℎ − 𝑥𝑘−1

𝑓
− 𝑑𝑥𝑘

𝜎𝑥

2

+
𝑦𝑘
ℎ − 𝑦𝑘−1

+ − 𝑑𝑥𝑘 × cot 𝜆𝑘−1 × sin𝜙𝑘−1
+

𝜎𝑦𝑧

2

+
𝑧𝑘
ℎ − 𝑧𝑘−1

+ − 𝑑𝑥𝑘 × cot 𝜆𝑘−1 × cos𝜙𝑘−1
+

𝜎𝑦𝑧

2

• We determine 𝑑𝑥𝑘 by imposing that the derivative of Δ is equal to zero

𝑑𝑥𝑘 =

cot 𝜆𝑘−1
+

𝜎𝑦𝑧
2 𝑦𝑘

ℎ − 𝑦𝑘−1
+ sin𝜙𝑘−1

+ + 𝑧𝑘
ℎ − 𝑧𝑘−1

+ cos𝜙𝑘−1
+ +

𝑥𝑘
ℎ − 𝑥𝑘−1

𝑓

𝜎𝑥
2

൘
cot2 𝜆𝑘−1

+

𝜎𝑦𝑧
2 + ൗ1 𝜎𝑥

2

dΔ

d(𝑑𝑥𝑘)
= 0
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𝑦0

𝑦1
−

𝑦1
ℎ

𝑦1
+

𝑦

𝑥1
ℎ 𝑥2

ℎ 𝑥3
ℎ𝑥1

𝑓
𝑥2
𝑓 𝑥3

𝑓

Δ𝑚𝑖𝑛

𝑑𝑥𝑘

𝑥𝑘
ℎ𝑥𝑘

𝑓

(𝑥𝑘
ℎ , 𝑦𝑘

ℎ)

𝑓(𝑥𝑘−1
𝑓

, 𝑦𝑘−1
+ )

(𝑥𝑘−1
𝑓

, 𝑦𝑘−1
+ )

KINEMATIC FITTING

STANDARD KALMAN FILTER

OUR KALMAN FILTER™

+

=

𝑥
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• We constructed a Toy Monte Carlo study as a sanity check for our current Kalman filter™

• The study will eventually develop in multiple steps:

➢ Use a perfect helix model with fixed step length to check the a priori model

➢ Use a perfect helix model with randomized step length (but no smearing)

➢ Add Gaussian error on 𝑥𝑦𝑧 (1D at a time, then 2D at a time, then fully 3D) to validate covariance and 

calibrate 𝜒2

➢ Use Cauchy smearing instead to test sensitivity to noise model

➢ Simulate Energy Loss etc..

• The current presentation will cover the first two steps in the study

16
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• We applied our Kalman Filter™ to ideal 

measurements following perfectly an helix with 

initial coordinates: 𝑠0
𝑇 =

(𝑦0 𝑧0 1/𝑟0 𝜙0 𝜆0) =
𝑦0
ℎ 𝑧0

ℎ 0.014 𝑐𝑚−1 6 rad −0.05 rad
and the free parameter 𝑥0 = 𝑥0

ℎ and the step 

𝑑𝑥 = 0.04 cm

17

Note: even though we have unsmeared 

idealized measurement for this first study 

we kept the ‘𝑅 (noise) matrix’ unmodified 

with uncertainties Σ𝑥𝑦 = 4𝑐𝑚
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• Plots describing the evolution of the estimate of the measured quantities (𝑦, 𝑧) as a function of the free parameter 𝑥 for the 

perfect helix. Note that the TPC points have on the x coordinate the measured value, while for the estimates we use the estimated 

𝑥 from the kinematic fitting (i.e. 𝑥𝑘 = 𝑥0 + 𝑘 × 𝑑𝑥𝑘)

18FILTER PROPAGATION DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)Note: the ‘TPC Cluster measured values’ are 

from a Toy MC, so the red error bars are the 

dummy values from the R matrix
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• We now replot the results from the previous slide, all identical except replacing the 𝑥 coordinate by 𝑥ℎ instead of 𝑥𝑓. The 

plots show that the predicted 𝑦 and 𝑧 components coincide with the measured ones

19FILTER PROPAGATION DIRECTION

Note: this is not the same as using 

the standard Kalman filter since y 

and z have been estimated using 

the x from kinematic fitting, as in 

the previous slideKF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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• With the current sigma values (𝜎𝑥 = 0.5𝑐𝑚 and 𝜎𝑦𝑧 = 1𝑐𝑚 ) the ratio 𝜎𝑥/𝜎𝑦 is large enough that the evolution of 

𝑦 and 𝑧 is essentially decoupled from the evolution of the free parameter 𝑥.

• This gives us 𝑦𝑘
− ≃ 𝑦𝑘

ℎ and 𝑧𝑘
− ≃ 𝑧𝑘

ℎ and an 𝑥𝑓 that is updated completely disregarding the measured 𝑥ℎ values

• A way to see this is to divide the 𝑑𝑥𝑘 update formula into two parts: one that depends on the evolution of the 𝑥 free 

parameter, and one on 𝑦 and 𝑧:

𝑑𝑥𝑘 =

cot 𝜆𝑘−1
+

𝜎𝑦𝑧
2 𝑦𝑘

ℎ − 𝑦𝑘−1
+ sin𝜙𝑘−1

+ + 𝑧𝑘
ℎ − 𝑧𝑘−1

+ cos 𝜙𝑘−1
+

൘
cot2 𝜆𝑘−1

+

𝜎𝑦𝑧
2 + ൗ1 𝜎𝑥

2

+

𝑥𝑘
ℎ − 𝑥𝑘−1

𝑓

𝜎𝑥
2

൘
cot2 𝜆𝑘−1

+

𝜎𝑦𝑧
2 + ൗ1 𝜎𝑥

2

= 𝑑𝑥𝑦𝑧 + 𝑑𝑥𝑥

• With the current sigma values (𝜎𝑥 = 0.5𝑐𝑚 and 𝜎𝑦𝑧 = 1𝑐𝑚 ) 𝑑𝑥𝑦𝑧 completely dominates, being often 2 or 3 

orders of magnitude larger than 𝑑𝑥𝑥: this gives us fairly predictions for 𝑦 and 𝑧 very close to the measured values, 

but completely wrong ones for 𝑥, becuase the fit can never recover from a bad initial estimate for the free 

parameter
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21FILTER PROPAGATION DIRECTION

• In order for the x parameter to have more weight in the update of 𝑑𝑥𝑘, changed the value of 𝜎𝑦𝑧 from 1cm to 4cm, leaving 𝜎𝑥 = 0.5𝑐𝑚

• The fit initially concentrates on fixing the 𝑥 prediction until that becomes accurate, and then it focuses on yz, reaching similar levels of 

precision by the end

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)
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22FILTER PROPAGATION DIRECTION

• We now test an extreme case were 𝜎𝑦𝑧/𝜎𝑥 is very large: 𝜎𝑦𝑧 is changed from 1cm to 1000cm, leaving 𝜎𝑥 = 0.5𝑐𝑚

• This becomes very close to be using 𝑥ℎ instead of 𝑥𝑓

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1000𝑐𝑚)
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23FILTER PROPAGATION DIRECTION

• We try applying a standard Kalman Filter to our Toy Monte Carlo, such that it is identical to our Kalman Filter™ but it avoids the 

kinematic fitting algorithm completely

• We get essentially the same result as in the last slide: having 𝜎𝑦𝑧/𝜎𝑥 very large is equivalent to a standard Kalman Filter
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• Now we try applying our Kalman Filter to 

ideal measurements following perfectly an 

helix with initial coordinates: 𝑥𝑖
𝑇 =

(𝑦𝑖 𝑧𝑖 1/𝑟𝑖 𝜙𝑖 𝜆𝑖) =
𝑦1
ℎ 𝑧1

ℎ 0.014 𝑐𝑚−1 6 rad −0.05 rad
and the free parameter 𝑥𝑖 = 𝑥1

ℎ but with a 

randomized step 𝑑𝑥 uniformely distributed 

between 0.02cm and 0.06cm. 

24

Note: the step progression is rondomized, 

but we are still following a perfect helix 

i.e. No smearing on the xyz coordinates 

is involved
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• Plots describing the evolution of the estimate of the measured quantities (𝑦, 𝑧) as a function of the free parameter 𝑥 for the 

perfect helix. Note that the the TPC points have on the x coordinate the measured value, while for the estimates we use the 

estimated x (i.e. 𝑥𝑘 = 𝑥0 + 𝑘 × 𝑑𝑥𝑘)

25FILTER PROPAGATION DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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• Reapplying the fit with the new 𝜎𝑦𝑧 = 4cm we see that the 3D predictions are more in line with the Monte Carlo truth, past the 

first few steps

26

FILTER 

PROPAGATION 

DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚) KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)
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RANDOMIZED X STEP

• Reapplying the fit with the new 𝜎𝑦𝑧 = 4cm we see that the 3D predictions are more in line with the Monte Carlo truth, past the 

first few steps

27

FILTER 

PROPAGATION 

DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚) KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)
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• Since 𝜎𝑥 and 𝜎𝑦𝑧 are essentially weights, only their ratio 𝜎𝑥/𝜎𝑦𝑧 should matter. To test this we try the pair 𝜎𝑥 , 𝜎𝑦𝑧 =

(1𝑐𝑚, 8𝑐𝑚) which has the same ratio as 𝜎𝑥 , 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)

28

FILTER 

PROPAGATION 

DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (1𝑐𝑚, 8𝑐𝑚)KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)
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RANDOMIZED X STEP: TESTING THE RATIO

• Since 𝜎𝑥 and 𝜎𝑦𝑧 are essentially weights, only their ratio 𝜎𝑥/𝜎𝑦𝑧 should matter. To test this we try the pair 𝜎𝑥 , 𝜎𝑦𝑧 =

(1𝑐𝑚, 8𝑐𝑚) which has the same ratio as 𝜎𝑥 , 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)

29

FILTER 

PROPAGATION 

DIRECTION

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚) KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (1𝑐𝑚, 8𝑐𝑚)
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RANDOMIZED X STEP

• Plots comparing the reconstructed tansverse momentum 𝑝𝑇 and the  reconstructed total momentum 𝑝𝑇 from our Kalman filter 

algorithm™ to the MC truth as a function of the free parameter 𝑥

30
FORWARD FITKF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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31FITTER PROPAGATION DIRECTION

• We try applying a standard Kalman Filter to our Toy Monte Carlo, such that it is identical to our Kalman Filter™ but it avoids the 

kinematic fitting algorithm completely

• This means that our free parameter coincides with the measured value of x for the TPC cluster
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32FITTER PROPAGATION DIRECTION

• We try applying a standard Kalman Filter to our Toy Monte Carlo, substituting the values in the 𝑅 matrix with Σ𝑥𝑦 = 10−6cm , 

where before we had Σ𝑥𝑦 = 4cm: with such a small R the Kalman filter follows the measurements almost exactly
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APPLYING A VERY SMALL R TO OUR KALMAN FILTER

33FITTER PROPAGATION DIRECTION

• We try applying our Kalman Filter™ to our Toy Monte Carlo, but substituting the values in the 𝑅 matrix with Σ𝑥𝑦 = 10−6cm , 

where before we had Σ𝑥𝑦 = 4cm: with such a small R the Kalman filter should converge with the measurement very quickly 

(this happens immediately with a Standard Kalman filter, as you can see in the previous slide)

KF™: 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 4𝑐𝑚)
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SUMMARY AND FUTURE STEPS

• The Kalman Filter now in use is convoluted with Kinematic Fitting which determines the evolution of the free 

parameter, minimizing the distance between the measured value and the a priori prediction

• The Kinematic Fitting is regulated by two weights 𝜎𝑦𝑧 and 𝜎𝑥 whose ratio determines weather the fit is 

dominated by corrections related to the 𝑦𝑧 or the 𝑥 measurements and predictions 

• With the previous values of 𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚) the Kalman Fit disregarded the 𝑥 measurements in the 

update

➢ Increasing the value of 𝜎𝑦𝑧 ,bringing the ratio from Τ𝜎𝑦𝑧 𝜎𝑥 = 2 to Τ𝜎𝑦𝑧 𝜎𝑥 = 8 the fit better takes into 

account the x measurements and follows the Monte Carlo truth more closely

• Future steps:

➢ Weights with  a larger Τ𝜎𝑦𝑧 𝜎𝑥 ratio (i.e. following the x measurement more closely) should maybe be 

used

➢ A smeared helix Toy Monte Carlo needs to be investigated

➢ Other options for the free parameter need to be studied

34
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BACKUP

35
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KALMAN FILTER APPLICATION

36

• We apply a Kalman filter to the motion of a charged particle in the magnetic field

ቐ

𝑥 = 𝑥0 + 𝑟 tan𝜆 (𝜙 − 𝜙0)
𝑦 = 𝑦𝐶 − 𝑟 cos𝜙
𝑧 = 𝑧𝐶 + 𝑟 sin𝜙

TRACK PARAMETERS

We apply the Kalman filter to track candidates, 

consisting of groups of TPC clusters, which are 

identified and put together during the 

reconstruction process. Each step of the Kalman 

filter algorithm is identified by one of these TPC 

clusters

T. Junk, DUNE-Doc-13933

https://docs.dunescience.org/cgi-
bin/private/ShowDocument?docid=13933

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=13933
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KALMAN FILTER: COORDINATE SYSTEM

37

• Note that in our coordinate sytem z is the flux direction, y is the vertical direction and x is the drift direction (i.e. 

the magnetic field direction)

y

z

x
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KALMAN FILTER APPLICATION: INITIAL ESTIMATES

• Before the Kalman filter algorithm can be applied, we need an initial estimate for the state vector, which in our case  

includes 𝑦, 𝑧, Τ1 𝑟 , 𝜙 and 𝜆 and the covariance matrix

𝑥0
𝑇 = (𝑦0 𝑧0 1/𝑟0 𝜙0 𝜆0) = 0 0 0.1 0 0

𝑃0 =

12 0 0
0 12 0
0
0
0

0
0
0

0.52

0
0

0
0
0

0.52

0

0
0
0
0

0.52

STATE VECTOR

COVARIANCE 

MATRIX

38

• The estimated quantities from the state vector can be used to estimate the particle’s momentum

൞

𝑝𝑥 = 𝑝𝑇 tan 𝜆
𝑝𝑦 = 𝑝𝑇 sin𝜙

𝑝𝑧 = 𝑝𝑇 cos𝜙

𝑝𝑇 ΤGeV 𝑐 = 0.3 × 𝐵 𝑇 × 𝑟(𝑚)
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KALMAN FILTER APPLICATION: PREDICTION AND MEASUREMENT
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• From the equation of motion we obtain the prediction function for our state vector. Note that the drift direction 𝑥 is 

used as our free parameter

ො𝑥𝑘
− = 𝑓

ො𝑦𝑘−1
+

Ƹ𝑧𝑘−1
+

1/ Ƹ𝑟𝑘−1
+

𝜙𝑘−1
+

መ𝜆𝑘−1
+

=

ො𝑦𝑘−1
+ + dxk × cot መ𝜆𝑘−1 × sin 𝜙𝑘−1

+

Ƹ𝑧𝑘−1
+ + dxk × cot መ𝜆𝑘−1 × cos 𝜙𝑘−1

+

1/ Ƹ𝑟𝑘−1
+

𝜙𝑘−1
+ + dxk × cot መ𝜆𝑘−1 ×1/ Ƹ𝑟𝑘−1

+

መ𝜆𝑘−1
+

• The only measured quantities in our case are 𝑦 and 𝑧, and are set at the center of the TPC cluster correspondent to 

the present step.

𝑠𝑘
ℎ =

𝑦𝑘
ℎ

𝑧𝑘
ℎ

Note: the prediction model 

does not account for dE/dx 

energy loss
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KALMAN FILTER APPLICATION: COVARIANCE MATRIX PREDICTION
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• First step to make the prediction for the covariance matrix is to calculate the Jacobian

𝐹𝑘−1 =
𝜕𝑓 ො𝑥𝑘−1

+

𝜕 ො𝑥𝑘−1
+ =

1 0
0
0
0
0

1
0
0
0

0
0
1

𝑑𝑥𝑘 cot መ𝜆𝑘−1
+

0

𝑑𝑥𝑘 cot መ𝜆𝑘−1
+ cos 𝜙𝑘−1

+

−𝑑𝑥𝑘 cot መ𝜆𝑘−1
+ sin 𝜙𝑘−1

+

0
1
0

𝑑𝑥𝑘 sin 𝜙𝑘−1
+ (−1 − cot2 መ𝜆𝑘−1

+ )

𝑑𝑥𝑘 cos 𝜙𝑘−1
+ (−1 − cot2 መ𝜆𝑘−1

+ )
0

Τ𝑑𝑥𝑘 Ƹ𝑟𝑘−1
+ (−1 − cot2 መ𝜆𝑘−1

+ )
1

• The step uncertainty matrix is also needed

𝑄 =

0 0
0
0
0
0

0
0
0
0

0
0

𝜎Δ1/𝑟
0
0

0
0
0
𝜎Δ𝜙
0

0
0
0
0
𝜎Δ𝜆

• The prediction is then:

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝑄
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KALMAN FILTER APPLICATION: EVALUATE THE RESIDUAL

• We now evaluate the residual and Kalman Gain

𝑦𝑘 = 𝑠𝑘
ℎ −𝐻 ො𝑥𝑘

− =
𝑦𝑘
ℎ − ො𝑦𝑘

−

𝑧𝑘
ℎ − Ƹ𝑧𝑘

−

𝐾𝑘 = 𝑃𝑘
−𝐻 𝑅 + 𝐻𝑃𝑘

−𝐻𝑇 −1

𝐻 =
1 0 0
0 1 0

0
0

0
0

𝑅 =
Σ𝑦𝑧
2 0

0 Σ𝑦𝑧
2

KALMAN GAIN

RESIDUAL 
With:

CONVERSION MATRIX

MEASUREMENT NOISE COVARIANCE

Note: The uncertainties in R are fixed, before the Kalman filter is applied, as external parameters: R is not updated.

41
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KALMAN FILTER APPLICATION: PREDICTION UPDATE

• We are now finally able to update our estimates using both the a priori prediction and the measurement

ො𝑥𝑘
+ = ො𝑥𝑘

− + 𝐾𝑘 𝑦𝑘

𝑃𝑘
+ = 1 − 𝐻𝑘𝐾𝑘 𝑃𝑘

−

STATE VECTOR

COVARIANCE MATRIX

42



FEDERICO
BATTISTI

TOY MONTE CARLO

• Plots describing the evolution of the estimate of the non measured quantities (
1

𝑟
, 𝜙, 𝜆) as a function of the free parameter 𝑥 for the 

perfect helix

43

FILTER PROPAGATION DIRECTION

43

𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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TOY MONTE CARLO

• Plots comparing the reconstructed tansverse momentum 𝑝𝑇 and the  reconstructed total momentum 𝑝𝑇 from the Kalman fitter 

algorithm to the MC truth as a function of the free parameter 𝑥

44
FORWARD FIT𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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RANDOMIZED X STEP

• Plots describing the evolution of the estimate of the non measured quantities (
1

𝑟
, 𝜙, 𝜆) as a function of the free parameter 𝑥 for the 

perfect helix

45

FILTER PROPAGATION DIRECTION

45

𝜎𝑥, 𝜎𝑦𝑧 = (0.5𝑐𝑚, 1𝑐𝑚)
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UNDERSTANDING STEP DETERMINATION

• Reapplying the fit with the new 𝜎𝑦𝑧 = 4cm we see that the 3D predictions are more in line with the Montecarlo truth, past the 

first few steps

46

FITTER 

PROPAGATION 

DIRECTION

𝜎𝑦𝑧 = 2𝑐𝑚 𝜎𝑦𝑧 = 4𝑐𝑚
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UNDERSTANDING STEP DETERMINATION

• Reapplying the fit with the new 𝜎𝑦𝑧 = 4cm we see that the 3D predictions are more in line with the Montecarlo truth, past the 

first few steps

47

𝜎𝑦𝑧 = 2𝑐𝑚

FITTER 

PROPAGATION 

DIRECTION

𝜎𝑦𝑧 = 4𝑐𝑚
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UNDERSTANDING STEP DETERMINATION

• The momentum reconstruction performance remains roughly the same

48BACKWARD FIT


