

CHRISTAN DANIES UNIVERSITY AT ALBANY

### Implementation of the Gluckstern parametrization in ParamSim CAF trees

Vivek Jain U Albany

Nov 30, 2020

Checking Gluckstern implementation in code

- ParamSim uses Gluckstern approximation for long tracks to get an estimate of the reconstructed momentum
  - Input is anatree and output is caf tree
  - Code is <u>here</u>
- Check two things:
  - Usage of  $p vs p_T$  in formula
  - What value to use for pad pitch, when converting track length into number of hits

From the DUNE Near Detector Task Force Report, T. Alion et al. (undated)

$$\left(\frac{\sigma(p_{\rm T})}{p_{\rm T}}\right)^2 = \left(\frac{\sigma_x \, p_{\rm T}}{0.3 \, B \, L^2} \, \sqrt{\frac{720}{N+4}}\right)^2 + \left(\frac{0.05}{B} \, \sqrt{\frac{1.43}{L \, X_0}}\right)^2$$

 $p_T$  is the momentum perpendicular to the B-field, i.e.,  $\sqrt{p_y^2 + p_z^2}$ , and

*L* is the track length in the *y*-*z* plane.  $\sigma_x$  is the pad pitch, used to convert 3-D track length into N.

In the code,  $p_T$  has been replaced by **p**. Check the validity of that approximation.

$$\sigma_{\theta}^{2} = \left(\frac{\sigma_{x}}{L} \sqrt{\frac{12(N-1)}{N(N+1)}}\right)^{2} + \left(\frac{0.015}{p} \sqrt{\frac{L}{3X_{0}}}\right)^{2}.$$

As defined,  $\theta$  is = (90 -  $\lambda$ ), where the latter is the angle relative to the y-z plane

Two ways of calculating momentum uncertainty

By default, p is used, so we straight away get  $\sigma_{p}$ 

In my calculation, we first get  $\sigma_{pT}$  from use of Gluckstern formula, then use  $p_T = p^* \cos(\lambda)$ , and assume  $\delta \lambda \sim 0.35^\circ$  to estimate  $\sigma_p$ 

• Tom said uncertainty on 3-D angle ~  $0.5^{\circ}$ 

 $\Box \quad \sigma_p = [sum in quadrature of \sigma_{pT} and p_T^*tan(\lambda) \delta\lambda]/cos(\lambda)$ 

Only use tracks with trackLength > 100 cm. – just to get long tracks

# (a) Look at six regions of phase space

| px, pT regions                                                   | # entries | Std. Dev. of<br>(default preco – truep) | Std. deviation of<br>(my preco – truep) |  |
|------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------|--|
| px < 0.05 & pT > 0.5                                             | 5294      | 0.0311                                  | 0.0313                                  |  |
| px: 0.05-0.1 & pT > 0.5                                          | 5143      | 0.315                                   | 0.032                                   |  |
| px: 0.1-0.5 & pT > 0.5                                           | 30462     | 0.0341                                  | 0.0342                                  |  |
| px > 0.5 & pT > 0.5                                              | 11538     | 0.0425                                  | 0.044                                   |  |
| px > 0.5 & pT < 0.5                                              | 2266      | 0.0179                                  | 0.0246                                  |  |
| px < 0.5 & pT < 0.5                                              | 55829     | 0.008                                   | 0.009                                   |  |
| As px increases relative to pT, effect gets bigger – no surprise |           |                                         |                                         |  |



#### Difference in the two uncertainties





Fractional change in uncertainty vs. true p (Y-scales are different)



What value of pad pitch to use, i.e., what to assume for  $\sigma_x$ 

- This makes a difference, since N<sub>hits</sub>=3-D trkLength/pad pitch, and the pitch itself appears in the Gluckstern formula
  - However, momentum uncertainty has two terms the pad pitch only affects the measurement term ( $\alpha$  (pitch)<sup>3/2</sup>), while the MCS term is unaffected
- In the code, it is set to 0.1 cm
- From Tom: "The TPC Cluster search window is an adjustable fcl parameter. I believe by default it is set to 2 cm."

□ For now, I set it to 1 cm, just to get an estimate

In my test, the measurement term increases by ~ 31, but most of the time MCS term is much larger, so the overall uncertainty changes by a smaller amount



These two plots used the default calculation for the momentum uncertainty

Above plots are for one corner of phase space: trackLength>100 cm, and  $p_x \& p_T>0.5$ 

## Look at other regions of phase space for pad pitch 1 cm (numbers in black are for pad pitch = 0.1 cm)

| px, pT regions          | # entries | Std. Dev. of<br>(default preco – truep) | Std. deviation of<br>(my preco – truep) |
|-------------------------|-----------|-----------------------------------------|-----------------------------------------|
| px < 0.05 & pT > 0.5    | 5294      | 0.0494 (0.0311)                         | 0.0492 (0.0313)                         |
| px: 0.05-0.1 & pT > 0.5 |           |                                         |                                         |
| px: 0.1-0.5 & pT > 0.5  |           |                                         |                                         |
| px > 0.5 & pT > 0.5     | 11538     | 0.071 (0.0425)                          | 0.0705 (0.044)                          |
| px > 0.5 & pT < 0.5     | 2266      | 0.0375 (0.0179)                         | 0.033 (0.0246)                          |

Interestingly enough, for the larger pad pitch size, the behavior of the two sigmas flips in the last case – not sure if that means something, or just turns out like that

preco-truep vs. truep - default



### px > 0.5 & pT > 0.5 Use default calculation

preco-truep vs. truep - default



## Summary

- Gluckstern formulation for momentum uncertainty is affected more by the pad pitch size than by using pT
- The calculation of the uncertainty of the angle depends on pad pitch – but I didn't check this.
  - □ It depends on total momentum, so the pT issue does not apply
- Also, I didn't check the case when we use the range, i.e., for tracks ending within the TPC
  - I noticed that  $\sigma_p$  is set to 0.1 GeV for all tracks, and only the uncertainty on the angle is calculated (same formula as for tracks leaving the TPC)