Xe doping analysis update: statistics on Fast Component

27/11/2020

L. Bomben, C. Cattadori

Defining fast & slow light yield

Time survey of Q & NQ detection efficiency

Time survey of <LY_{fast}>

Time survey of <LY_{slow}>

Time survey of events showing no Fast Light

LY slow - Q vs NQ

Dope 1

LY fast - Q vs NQ

Dope 1

Fast component shows no apparent sign of the "lobes"

Conclusions

- In the very first runs of D1: <Fast_NQ> 35 ; <Fast_Q> ~ 7 \rightarrow Fast_NQ/Fast_Q ~ 5
- Along D1,
 - Light Detection Efficiency of Q (ϵ_{0}), increases from ~55% to ~80%.
 - Fast_Q decreases down to an average of few photons per event <Fast_NQ> 6 ; <Fast_Q> ~ 2 \rightarrow Fast_NQ/Fast_Q ~ 3
- further doping increases the fraction of events with no fast component, but still ~50% of total Q events have Fast_Q
- In Q, fraction of fast light decreases with doping: from ~ uniform distribution between ~0.1-0.5 to
 <0.2 for Q (determination of the 90% population tbd)
- In NQ less evident trend (determination of the 90% population tbd)
- previously observed lobes visible in the slow component, absent in the fast
- The few photons (~2) observed in 50% of Q events may be generated inside the XA (WLS plate and/or Cerenkov in quartz/dichroic filters, or in LAr contained in the XA): in this hypothesis the Q_fast should be considered as an "offset" to the total light (hence subtracted)