Electroweak Couplings of the Higgs Boson at a Multi-TeV Muon Collider

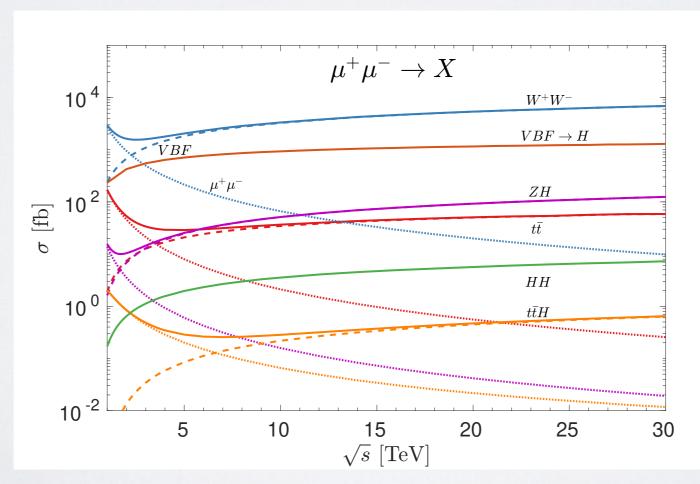
Xing Wang UC San Diego

Snowmass EF01 WG Meeting Dec 10, 2020

Content

Introduction

Single Higgs production and VVH couplings


Double Higgs production and HHH and WWHH couplings

Conclusion

Muon Collider

$$\sqrt{s}$$
 (TeV) 3 6 10 14 30 benchmark lumi (ab⁻¹) 1 4 10 20 90

Lumi.
$$> \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Muon Collider

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab ⁻¹)	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
ZZ o H	51	72	89	96	120
$WW \to HH$	0.80	1.8	3.2	4.3	6.7
ZZ o HH	0.11	0.24	0.43	0.57	0.91

$$\mathcal{O}(10^6 - 10^8) \text{ Higgs} \Rightarrow \mathcal{O}(10^{-3} - 10^{-4}) \text{ precision}$$

 $\mathcal{O}(10^3 - 10^5) \text{ di-Higgs} \Rightarrow \mathcal{O}(10^{-2} - 10^{-3}) \text{ precision}$

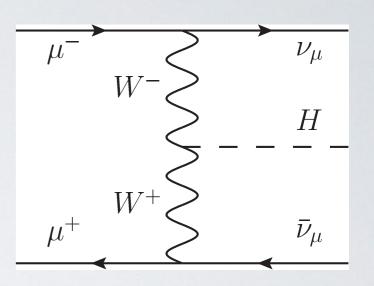
Higgs and BSM

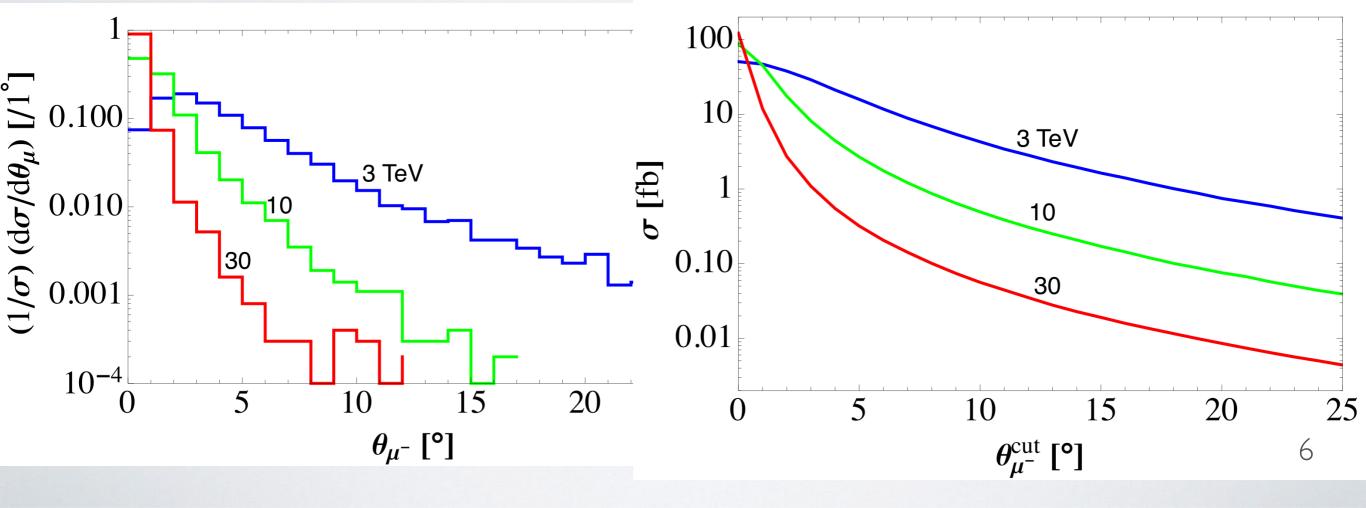
$$\mathcal{L} \supset \left(M_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_\mu Z^\mu \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$$

In terms of dim-6 EFT

$$\mathcal{O}_{H} = \frac{c_{H}}{2\Lambda^{2}} \partial_{\mu} (\Phi^{\dagger} \Phi) \partial^{\mu} (\Phi^{\dagger} \Phi) , \quad \mathcal{O}_{6} = -\frac{c_{6}\lambda}{\Lambda^{2}} (\Phi^{\dagger} \Phi)^{3}$$

$$\Delta \kappa_{V} = -\frac{c_{H}}{2} \frac{v^{2}}{\Lambda^{2}} , \qquad \Delta \kappa_{V2} = -2c_{H} \frac{v^{2}}{\Lambda^{2}} ,$$

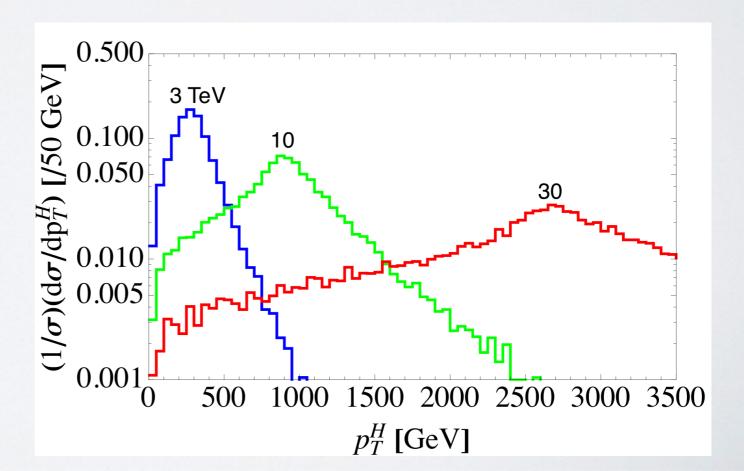

$$\Delta \kappa_{3} \approx -\frac{3c_{H}}{2} \frac{v^{2}}{\Lambda^{2}} + c_{6} \frac{v^{2}}{\Lambda^{2}} , \qquad \Delta \kappa_{4} \approx -\frac{25}{9} c_{H} \frac{v^{2}}{\Lambda^{2}} + 6c_{6} \frac{v^{2}}{\Lambda^{2}}$$


Currently at LHC

$$\mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \sim \mathcal{O}(5\%)$$
 for $\Lambda \sim 1$ TeV

Single Higgs Production

$$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu H$$
 (WW fusion),
 $\mu^+\mu^- \to \mu^+\mu^- H$ (ZZ fusion).

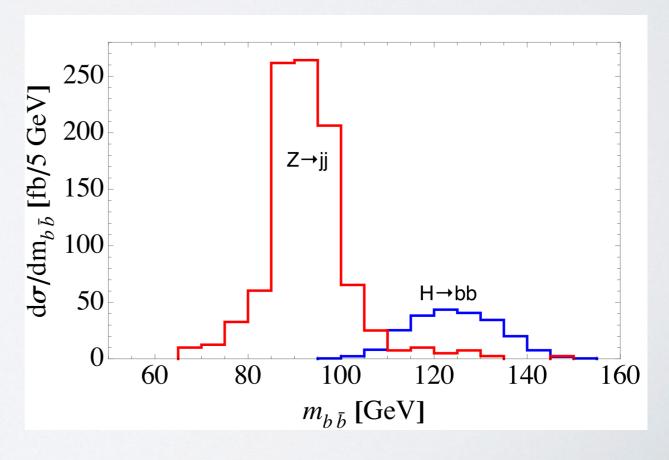


Single Higgs Production

- Inclusive channel: events from WW fusion and from ZZ fusion without detecting muons
- Exclusive I µ channel: events from ZZ fusion with at least one muon detected.

$$10^{\circ} < \theta_{\mu^{\pm}} < 170^{\circ}$$

$$p_{T}^{\mu} > 0.17E_{\mu}$$



Single Higgs Production

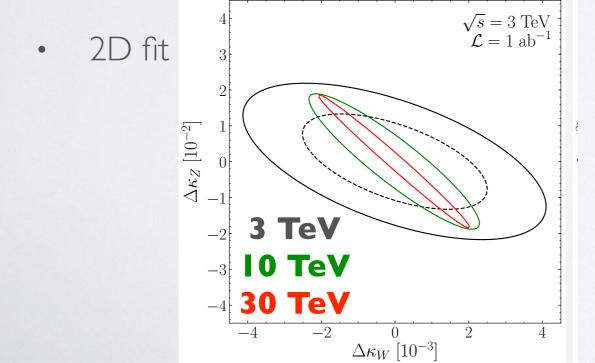
Focus on the leading decay channel

$$H\to b\bar{b}$$

$$p_T(b)>30~{\rm GeV}, \qquad 10^\circ<\theta_b<170^\circ,$$

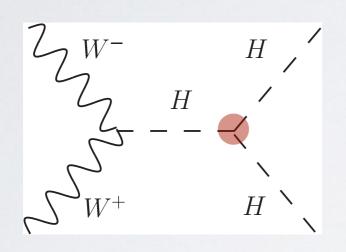
$$M_{\rm recoil}=\sqrt{(p_{\mu^+}+p_{\mu^+}-p_H)^2}>200~{\rm GeV}$$

$$\Delta E/E = 10\%$$
 $m_{b\bar{b}} = m_H \pm 15 \text{ GeV}$

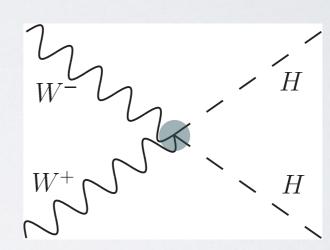


V-V-H Coupling

Single parameter fit:


$\sqrt{s} \text{ (TeV)}$	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$(\Delta \kappa_W)_{ m in}$	0.26%	0.12%	0.073%	0.050%	0.023%
$(\Delta \kappa_Z)_{ m in}$	2.4%	1.1%	0.65%	0.46%	$\left 0.20\% \right $
$(\Delta \kappa_Z)_{1\mu}$	1.7%	1.5%	1.5%	1.5%	1.5%


Statistical uncertainty only



Double Higgs Production

$$\mu^+\mu^- \xrightarrow{VBF} HH + X$$

$$\mathcal{A}(W_L^+W_L^- \to HH) = \mathcal{A}_{SM} + \mathcal{A}_1\Delta\kappa_{W_2} + \mathcal{A}_2\Delta\kappa_3$$

$$\mathcal{A}_{\mathrm{SM}}, \ \mathcal{A}_2 \sim \text{constant} \\ \mathcal{A}_1 \sim E^2 \quad \text{when } E \gg M_W$$

Double Higgs Production

Focus on the leading decay channel

$$BR(4b) \simeq 34\%$$

$$p_T(b) > 30 \text{ GeV}, \quad 10^{\circ} < \theta_b < 170^{\circ}, \quad \Delta R_{bb} > 0.4$$

paired by minimizing $(m_{j_1 j_2} - m_H)^2 + (m_{j_3 j_4} - m_H)^2$
 $|m_{jj} - m_H| < 15 \text{ GeV}$

$$M_{\text{recoil}} = \sqrt{(p_{\mu^+} + p_{\mu^-} - p_{H_1} - p_{H_2})^2} > 200 \text{ GeV}$$

Double Higgs Production

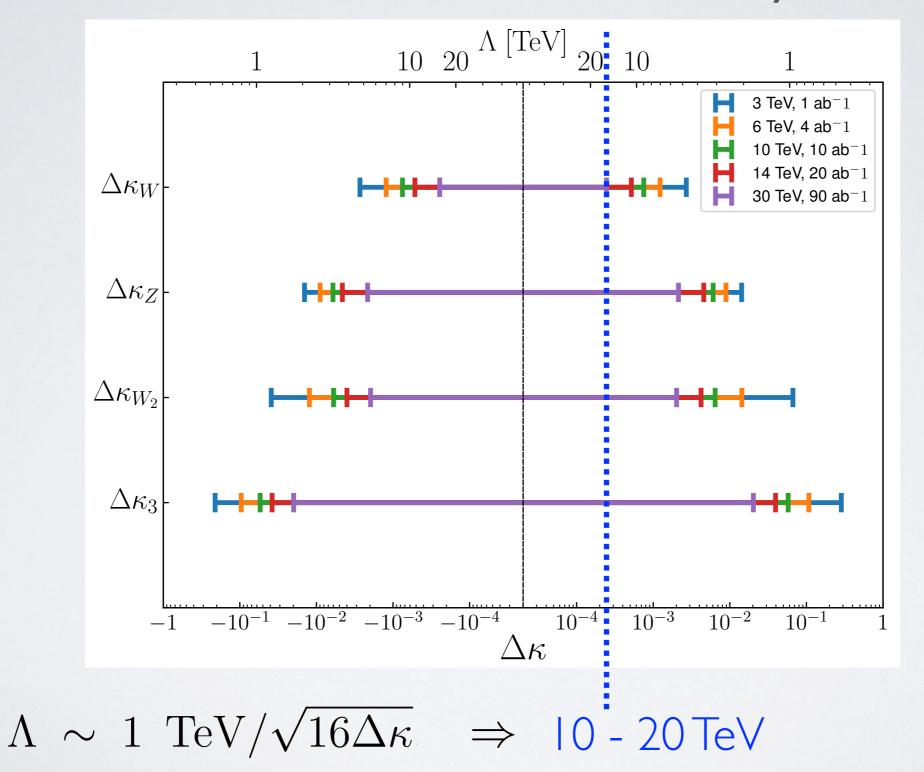
$$\sigma = \sigma_{SM} \left[1 + r_1 \Delta \kappa_{W_2} + r_2 \Delta \kappa_3 + r_3 \Delta \kappa_{W_2} \Delta \kappa_3 + r_4 (\Delta \kappa_{W_2})^2 + r_5 (\Delta \kappa_3)^2 \right]$$

- Sensitive to H-H-H in low m_{HH} region.
- Sensitive to W-W-H-H in high m_{HH} region.

m_{HH} [GeV]	$\sigma_{\rm SM}$ [ab]	r_1	r_2	r_3	r_4	r_5
[0, 350)	15	-2.7	-1.7	7.6	6.7	2.6
[350, 450)	24	-3.4	-1.2	5.2	7.8	0.95
[450, 550)	24	-4.0	-0.91	4.6	12	0.52
[550, 650)	21	-4.6	-0.70	4.7	17	0.36
[650, 750)	17	-5.3	-0.60	5.1	26	0.28
[750, 950)	24	-6.9	-0.52	6.3	46	0.23
[950, 1350)	23	-11	-0.47	8.7	120	0.19
[1350, 5000)	15	-18	-0.30	7.2	240	0.075

$$\sqrt{s} = 10 \text{ TeV}$$

H-H-H & W-W-H-H


• Single parameter fit:

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$(\Delta \kappa_{W_2})_{\mathrm{in}}$	5.3%	1.3%	0.62%	0.41%	$\boxed{0.20\%}$
$(\Delta \kappa_3)_{\mathrm{in}}$	25%	10%	5.6%	3.9%	$\left \ 2.0\%\ \right $

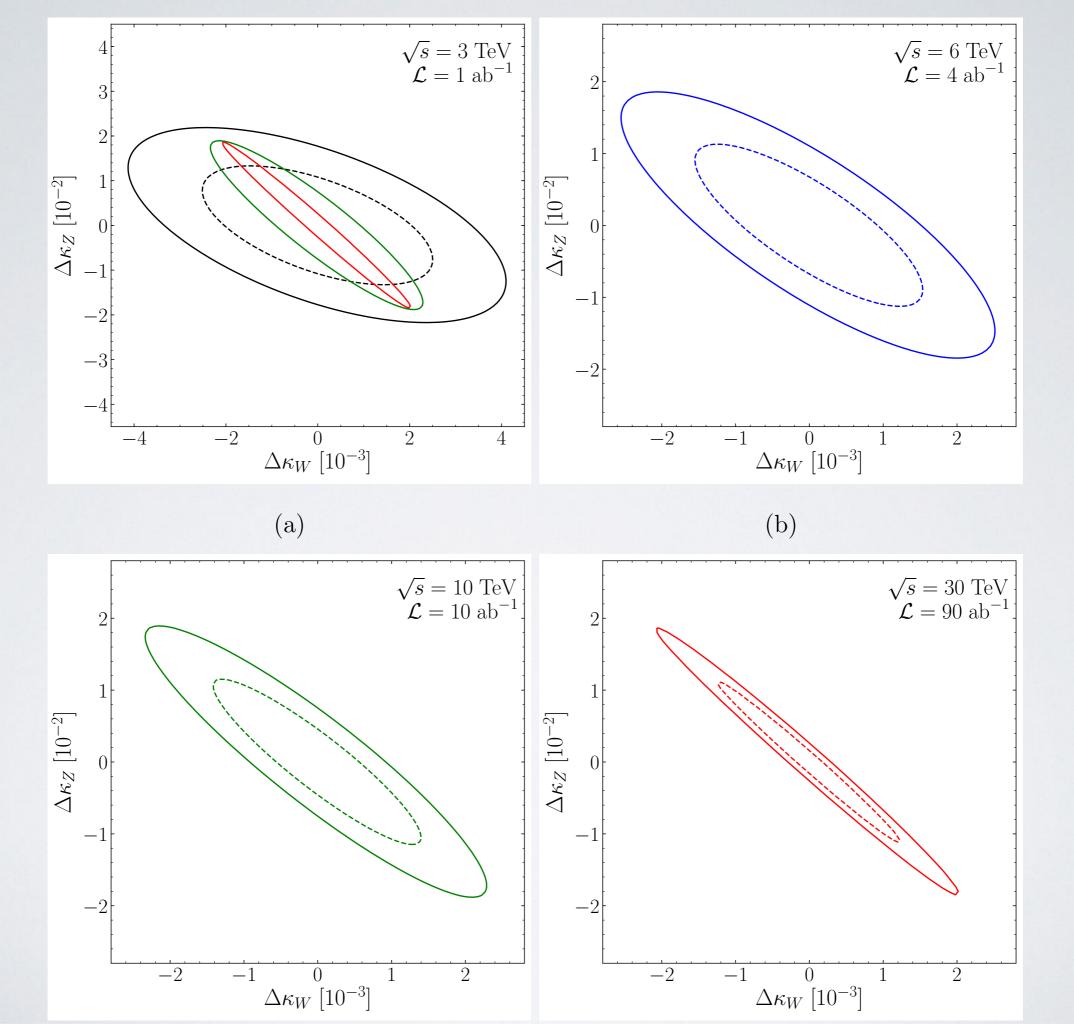
2D fit 150 C = 3 TeV $C = 1 \text{ ab}^{-1}$ $C = 1 \text{ ab}^{-$

Statistical uncertainty only

Result Summary

Conclusion

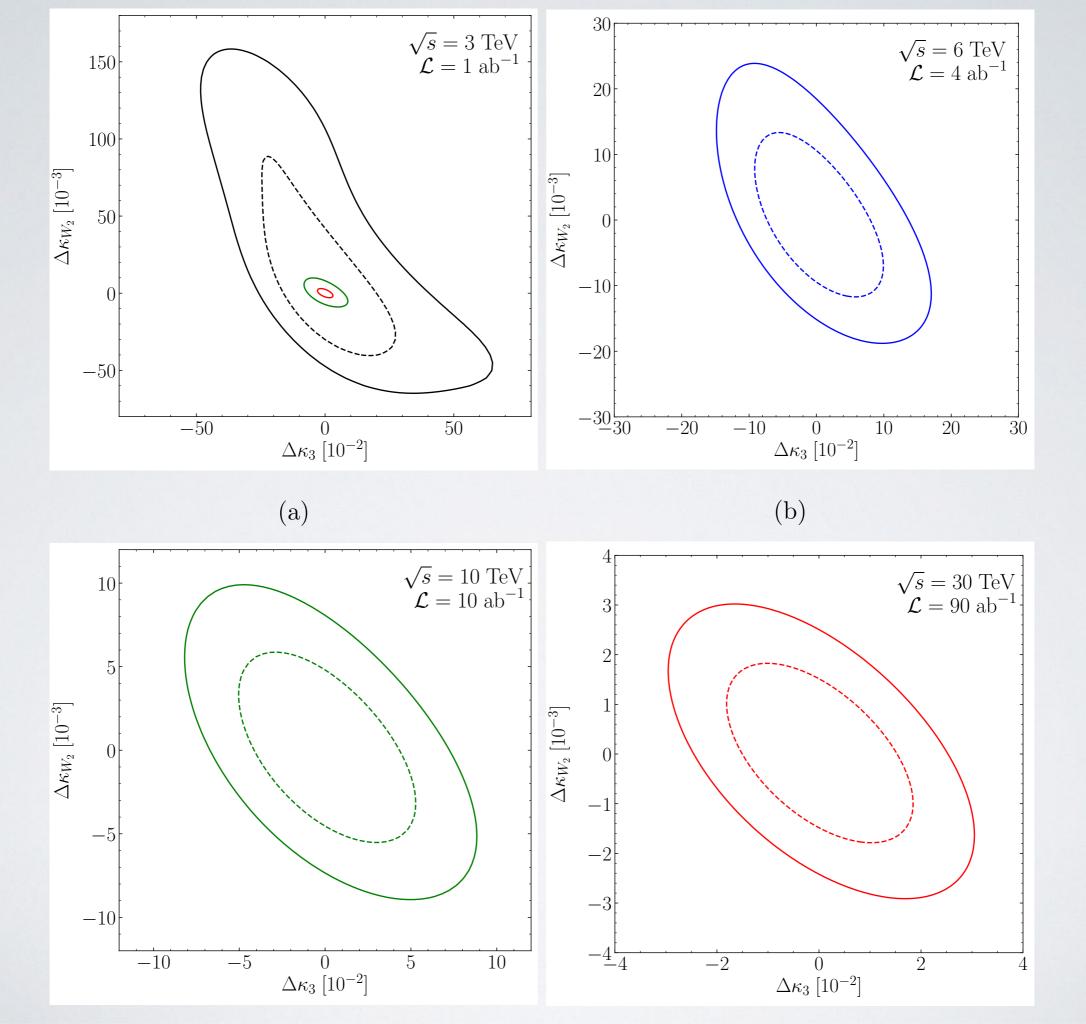
- · Great potential on Higgs precision measurement.
- Distinct/novel kinematical feature.


$\sqrt{s} \text{ (TeV)}$	3	6	10	14	30	Comparison
$WWH (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% (68% C.L.)
ZZH $(\Delta\kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	$0.13\% \ (95\% \ C.L.)$ CEPC
$WWHH (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5%, 1% CLIC/ (68% C.L.) FCC-hh
HHH $(\Delta \kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% FCC-hh $(68\%~\mathrm{C.L.})$ SppC

Back-ups

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab ⁻¹)	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
ZZ o H	51	72	89	96	120
$WW \rightarrow HH$	0.80	1.8	3.2	4.3	6.7
ZZ o HH	0.11	0.24	0.43	0.57	0.91
WW o ZH	9.5	22	33	42	67
$WW \to t \bar{t} H$	0.012	0.046	0.090	0.14	0.28
WW o Z	2200	3100	3600	4200	5200
WW o ZZ	57	130	200	260	420

Selection Efficiencies


\sqrt{s} (TeV)	3	6	10	14	30
$WW \to H: \epsilon_{\rm in} \ (\%)$	54	46	42	39	32
$ZZ o H: \epsilon_{ m in} \ (\%)$	57	49	44	41	35
Cross section $\sigma_{\rm in}$ (fb)	170	200	220	240	240
$ZZ \rightarrow H: \epsilon_{1\mu} \ (\%)$	11	2.7	0.84	0.37	0.071
Cross section $\sigma_{1\mu}$ (fb)	3.1	1.1	0.43	0.20	0.050
$VV \to HH: \epsilon_{hh} (\%)$	27	18	13	11	7.2
Cross section σ_{hh} (ab)	81	140	150	170	200

$$\mu^+\mu^- \to HH + X$$

$$\sigma = \sigma_{SM} \left[1 + R_1 \Delta \kappa_{W_2} + R_2 \Delta \kappa_3 + R_3 \Delta \kappa_{W_2} \Delta \kappa_3 + R_4 (\Delta \kappa_{W_2})^2 + R_5 (\Delta \kappa_3)^2 \right]$$

\sqrt{s} [TeV]	$\sigma_{\rm SM}$ [fb]	R_1	R_2	R_3	R_4	R_5
3 TeV	0.91	-3.5	-0.65	3.1	14	0.49
6 TeV	2.0	-3.9	-0.50	2.8	29	0.35
10 TeV	3.6	-4.3	-0.43	2.7	54	0.29
14 TeV	4.9	-4.4	-0.38	2.6	80	0.25
30 TeV	7.6	-4.4	-0.28	2.3	210	0.19

$$\Lambda \sim \sqrt{\frac{c_{H,6}}{\Delta \kappa}} \ v$$

\sqrt{s} (lun	ni.)	$3 \text{ TeV } (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Comparison	
WWH (Δ	$\kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [43]	CLIC
$\Lambda/\sqrt{c_i}$ (T	eV)	4.7	7.0	9.0	11	16	(68% C.L.)	CLIC
ZZH (Δt	$\kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]	CEPC
$\Lambda/\sqrt{c_i}$ (T	eV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)	CLFC
$WWHH$ (Δ	$\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [38], 1% [24]	CLIC/
$\Lambda/\sqrt{c_i}$ (T	eV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)	FCC-hh
HHH (Δ	$\kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]	FCC-hh
$\Lambda/\sqrt{c_i}$ (T	eV)	0.49	0.77	1.0	1.2	1.7	(68% C.L.)	SppC