Department of Physics University of Cincinnati

ν_{τ} Analysis in the DUNE ND

Miriama Rajaoalisoa ajaoama@mail.uc.edu

December 3, 2020

Objectives

Main objective : study of eventual tau neutrinos that we may have in the DUNE Near detector coming from short baseline oscillations in a sterile neutrino scheme.

Evaluate the ν_{τ} appearance sensitivity of DUNE ND in both leptonic and hadronic tau decay channels.

- Event classification : signal and background separation based on kinematic differences. (Same kinematic variables as used in NOMAD)
- Simulation : Events were simulated using GENIE and propagated through the Near Detector using EDEP-SIM .
- Beam used : Optimized beam for ν_{τ} appearance in the DUNE FD.

Outline for section 1

1

Muon channel

Electron channel

 $\tau \longrightarrow \rho \text{ channel}$

Conclusion

Muon channel

$\tau \rightarrow \mu^-$ channel

TMVA Event Classification based on TRUE GENIE kinematic variables

U 🔅

Muon channel

$\tau \twoheadrightarrow \mu^-$ channel

Selection efficiencies for cut : BDTG score > 0.95

¢

Sensitivity : based on event counting. All events were normalized such that they would correspond to 1.1e21 P.O.T. and 147t fiducial mass.

Figure of Merit : signal / √signal + background; select those with FOM ≥ 1.7 (stats only).

► FOM with 10% systematics : signal + background + 0.1* (signal+background); select those with FOM ≥ 1.7.

Muon channel

R. Keloth et Al. (arXiv:1710.00295v)

Ø

10

Muon channel

Electron channel

 $\tau \longrightarrow \rho$ channel

Conclusion

Miriama Rajaoalisoa | $u_{ au}$ Analysis in the DUNE Near Detector

Electron channel

$\tau \rightarrow e^-$ channel

TMVA Classification based on TRUE GENIE kinematic variables

C

Electron channeln

$\tau \rightarrow e^-$ channel

Ø

Electron channel

$\tau \rightarrow e^-$ channel

¢

Electron channel

R. Keloth et Al. (arXiv:1710.00295v)

Ø

Ø

13

Muon channel

Electron channel

 $\tau \longrightarrow \rho \text{ channel}$

Conclusion

Miriama Rajaoalisoa | $u_{ au}$ Analysis in the DUNE Near Detector

 $\tau \longrightarrow \rho$ channel

- Steps : develop a ρ selector then develop a classifier that separates NC events from ν_τ(τ→ρ⁻).
- ρ classification : TMVA Classification based on kinematic infomations.
 - Signal (true ρ) : from ν_{τ} CC events : $\tau \rightarrow \rho^{-} + \nu_{\tau}$; $\rho^{-} \rightarrow \pi^{-} + \pi^{0}$; $\pi^{0} \rightarrow 2\gamma$ - from NC events : $\rho^{-} \rightarrow \pi^{-} + \pi^{0}$ (the ρ is recorded)
 - Background (false ρ) : any π[±] + π⁰ couple that doesn't come from a true ρ⁻ from the hadronic system or τ decay.

$$\tau \longrightarrow \rho$$
 channel

Kinematic variables including :

0.6 0.8

Pion energy sharing

Ø

15

Thomas Kosc

(DUNE ν_{τ} meeting 11/05/2020)

Miriama Rajaoalisoa | ν_{τ} Analysis in the DUNE Near Detector

 $\tau \longrightarrow \rho$ channel

BDTG response

$$\tau \longrightarrow \rho$$
 channel

ROC Curve

Ø

 $\tau \longrightarrow \rho$ channel

- \blacktriangleright ν_{τ} CC vs NC classification :TMVA Classification based on kinematic infomations.
- Signal (for training purposes) ν_{τ} CC: $\tau \rightarrow \rho^- + \nu_{\tau}$; $\rho^- \rightarrow \pi^- + \pi^0$; $\pi^0 \rightarrow 2\gamma$ (assuming they would score high on rho score).
- Background : NC events with $\pi^{\pm} + \pi^{0}$ systems that come from a true ρ (assuming those would have a high rho score).

 $\tau \longrightarrow \rho$ channel

C

 $\tau \longrightarrow \rho$ channel

C

 $\tau \longrightarrow \rho$ channel

- Step 1 : get all the events with potential ρ candidates for ν_{τ} CC events and NC events. (Anything that has $\pi^{\pm} + \pi^{0}$ or $\pi^{\pm} + 2\gamma$). Look at all possible ρ system combination. 1^{st} cut : select those with ρ BDTG score > 0.9
- Step 2 : pass through the ν_{τ} CC vs NC selector to get a ν_{τ} BDTG score. 2^{nd} cut : select those with ν_{τ} BDTG score > 0.9

$$\tau \longrightarrow \rho$$
 channel

Ø

 $\tau \longrightarrow \rho$ channel

(23

Muon channel

Electron channel

 $\tau \longrightarrow \rho$ channel

Conclusion

Miriama Rajaoalisoa | $u_{ au}$ Analysis in the DUNE Near Detector

- For the hadronic channel, $\tau \rightarrow \rho^-$, supposing that we can select the ρ appropriately, kinematic-based classification gives a good separation for ν_{τ} and NC.
- For $\tau \rightarrow \rho^-$ channels, due to the double cuts, other cuts combinations may improve the sensitivity. Same if the ρ selection is improved.
- Sensitivities : stats only contours are reasonnable, but with our high statistics, the sensitivity is highly affected.
- Sensitivities : currently using just the single bin FOM with event counting. It is possible to do a multi-bin shape analysis eventually.

Thank you very much!

Miriama Rajaoalisoa | $u_{ au}$ Analysis in the DUNE Near Detector