

The 3DST Reconstruction

CubeRecon Status

Clark McGrew Stony Brook Univ.

- Track pattern recognition details
- Muon efficiency relative to other tracks

TL;DR

- The simulation and reconstruction follows the lead of the SuperFGD
 - → Response based on a beam test done at CERN (arxiv.ins-det:2008.08861)
 - Full "microscopic" simulation from energy deposition through electronics.
 - Event reconstruction applied to simulated events
- Reconstruction outputs
 - Position (x, y, z, t)
 - Direction (for longer tracks it's chosen based on time-of-flight)
 - Energy Deposition (both total and local)
 - Exception: very small energy deposits only provide positions, times and energy deposition (with a threshold of approximately 100 KeV)
- Current tracking efficiency
 - → Muons: >99% for isolated tracks
 - → Pion: 85% to 90% over 100 MeV/c
 - → Proton: about 90% over 400 MeV/c, 50% at 350 MeV/c
- Vertex resolution (not in this presentation)
 - → Multi-track: 5.4 mm (average)
 - → Single-track: 8.2 mm (average)
 - → Time resolution: 0.52 ns (excluding tails)

Geometry for 3DST, TPC, Calorimeter & Magnet

- All geometry is taken from DUNE ND-GGD
 - Software uses the input geometry, so it's insensitive to updates
- ➢ 3DST Geometry
 - → Cube size: 10mm x 10 mm x 10 mm
 - → Cubes: 252 x 236 x 200 (11.8944 M)
 - → Channels: 157072
 - ≻ 59472 xy + 50400 xz + 47200 yz
 - → Mass: 12.49 tons
- > TPC
 - → Based on Resistive MicroMEGAs
- ➤ Calorimeter
 - KLOE calorimeter installed with magnet
- Magnet: 0.4 Tesla

SAND Geometry v.13

The Flow of the Reconstruction

McGrew -- 3DST Reconstruction

Clusters produced by the MST

- > The order of the hits in the cluster is significant
 - ➤ A slight misuse of the TClusterRecon object
- > The tree is built from branches, and each branch is a sequence of hits
 - ➤ Each cluster represents one branch
 - → The hits in the cluster are ordered from "first" to "last"
 - Choice between which is "first" and which is "last" is arbitrary
 - Upstream is "first", downstream is "last" (mostly...)
- The "first" and "last" hits in a cluster are usually shared with another cluster
 - → This is how the connections between the branches are saved.
 - Side note: there are easy ways to find and remove duplicates.

Cluster Growth

- The track segments found by the minimal spanning tree are combined into longer segments
- Possibly combine clusters sharing a single hit (i.e. they are neighbors)
 - Choose best pair of clusters based on
 - Product of the number of hits in each cluster (prefer more)
 - Product of the minimum charge in each cluster (prefer larger)

> Change in χ^2 to a line $(\Delta \chi^2 = \chi^2_{1+2} - \chi^2_1 - \chi^2_2)$

- → If the best pair meets the goodness criteria, then combine
- Criteria assumes that tracks are locally straight
 - > Misses a "Y" when a pair of track segments are almost colinear
- Continue until there are no more candidates that can be combined.

Stony Brook University

Combine Short into Long Tracks (Cube::GrowTracks)

- Combine pairs of tracks that have a good match between the end points and directions.
- ➢ General algorithm:
 - → Queue the tracks based on the number of nodes
 - Longest track first
 - Number of nodes is equivalent to the number of hits
 - → For the front of the queue (longest first), compare with remaining tracks.
 - Don't match if the ends are far apart (default > 5 cm)
 - > Don't match if the directions are consistent with a kink (default: > 30°)
 - > Do match if the χ^2 between the end states is good enough (default: $\chi^2 < 16$)
 - Do match if the changes in direction and projected "miss" distance are small (default: < 10° and < 15 mm)</p>
 - This manages the case where the fitted covariance is underestimated due to the discreet cube positions.
 - → When a match is found
 - Remove both tracks from the queue
 - Combine the tracks and put the combined track at the front of the queue
 - It will be the longest track
 - ➤ If no match is found
 - > Put the track into the output object container.

* Stony Brook University

DUNE DEEP UNDERGROUND NEUTRINO EXPERIMENT

First Four 640 MeV π^+ Particle Gun Events as Reconstructed

Decay at rest to muon (electron is visible)
⁻
and the second se

Hard secondary scatter followed by decay at rest

Hard scatter followed by decay in flight

Hard scatter to $\pi \rightarrow \pi (250 \text{ MeV}) \rightarrow p + p$

* Stony Brook University

- The reconstruction efficiency is studied with a "particle bomb"
 - → Muon 100 700 MeV/c (30 degree forward cone)
 - → Proton 100 600 MeV/c (isotropic)
 - → Pion 100 700 MeV/c (isotropic)
- CubeRecon, Oct 5, 2019 version
 - → 1,000,000 generated events (40,000 used so far)
- Efficiency (same for μ , π^+ , and p)
 - Reco: Reconstructed track associated with primary particle
 > 90% of length from primary
 - True: Primary particle
 - starting point more than 5 cubes from the edge

- Muon efficiency ~ 99% above 200 MeV/c
 - → Note suppressed zero!
 - Inefficiency due to parallel and overlapping tracks
 - Depends on the phase space of the test sample

Muon Efficiency for Sub-samples

- Efficiency for non-parallel muons
 - Only includes tracks where the primary is doesn't have another track with a similar direction
 - Angle to nearest neighbor is between 25 and 120 degrees
- Efficiency versus angle to neighboring tracks
 - The angle to the closest (most parallel) track from the same vertex
 - There is a third track, but it is at a wider angle.

-0.2

0.4

0.6

Cosine of angle to most parallel track

0.8

02

Efficiency Versus True Muon Length

McGrew -- 3DST Reconstruction

0.93

0.92

-0.8

Muon Efficiency vs Cosine of Angle to Nearest Track

Neighbor Efficiency vs Momentum of Muon

12/01/20

McGrew -- 3DST Reconstruction

Proton and Pion Tracking Efficiency

- Integrated over isotropic "4π" distribution
 - Events have a muon (forwardgoing), pion and a proton
- Tracks that are "anti-parallel" to muon are treated as a kink in the muon tracks (~5% of tracks)
 - A kink of less than about 20°
- Inelastic hadronic interactions contribute to inefficiency
 - Changes the direction of the track, or truncates the track
 - ➤ Causes ~5% inefficiency
- Proton momentum threshold (350 MeV/c)
 - Tracks must have 4 cubes, implies track longer than 3 cm

Stony Brook University

Tracking Efficiency (charged pion and proton)

Pi+ Efficiency for True Cosine vs Momentum

Efficiency 0.9 0.8 0.7 0.6 0.5 0.4 0.3 F 0.2F 0.1 200 250 300 350 400 450 500 550 600 650 700 Momentum (MeV/c)

Efficiency at True Proton Momentum

Proton Efficiency for True Cosine vs Momentum

McGrew -- 3DST Reconstruction

Backup Slides