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@ CINGINNATI
Neutrino physics

Convolutional neural networks show
great promise in image classification
over the past decade.
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Most neutrino detector technologies e

naturally provide pixel maps which can
be classified using CNNSs.

Examples: NOVA, MicroBooNE, DUNE.

arXiv:1604.01444

/
A Issues with this approach:
| Al |
d , b Dense representation of sparse data.
) /
/; 1 - Operate over mostly empty space!
1% / Need to transform 3D representation into
p4 vOoxels.

input feature map - GNNs can work with reconstructed
spacepoints natively.
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Liquid Argon Time Projection Chambers

- Liquid Argon Time Projection Chambers (LArTPCs) are currently a very
important detector technology for neutrino physics.

- At FNAL: MicroBooNE, Icarus, SBND.
- Future: DUNE (70kT LArTPC deep underground, plus near detector).

- Charged particles ionize liquid
argon as they travel.

lonisation electrons drift due to
HV electrode field, and are
collected by anode wires.

CCCCCCC
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- Wire spacing ~3mm — produce
high-resolution images. i =
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DUNE far detector

) 70 kt LArTPC; 1'5km underground Long-Baseline Neutrino Facility

South Dakota Site Neutrinos from
Fermi National

Accelerator Laboratory
in lllinois

* High exposure in low-background
environment.

* Modular design:

Facility
and cryogenic
support systems

* Four large detector modules.
* Each consists of 200 individual TPCs.

One of four
detector modules of the
Deep Underground
Neutrino Experiment

* Transformations necessary to combine Sanor Underground
data across multiple modules in 2D.

Sanford Underground

Research Facility Fermilab
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Standard reconstruction chain
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T. Yang (ICHEP 2016) ArgoNeuT data event

Raw TPC output is wire waveforms.
Waveforms are then deconvolved and hit-finding is applied to produce Gaussian hits.
Each wire plane forms a 2D image in the space of wire vs readout time.

Three wire planes angled at -36°, 0°, 36° provide three 2D representations of the
event.

These 2D representations can be used to construct a 3D representation of the event.
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Graph neural networks

Describe information structure as a graph represented by and edges.

are generalised as
guantised objects with some

— arbitrary set of features.
- Edges describe the
/ relationships between nodes.
- Perform convolutions on nodes
— and edges to learn relationships

within the graph.
- Qutput is user-defined:
- Classify nodes or edges.
- Classify full graph.

- Regression outputs.
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Graph networks in H

University of

@ CINCINNAT

Investigating the use of Graph Neural Networks (GNNs) as an alternative to
Convolutional Neural Networks (CNNSs).

- Building on promising results from the HEP.TrkX collaboration using such methods for
track reconstruction in the LHC world.

Exa.TrkX project building on these results to further develop techniques in HL-LHC, and
branch out to explore other detector technologies like LArTPCs.
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@ cINCINNAT

Simulation
- Utilising two sets of simulation for these .
studies: “"%
\‘ O
- Atmospheric neutrino interactions %
\‘6
Higher in primary neutrino energy Q‘%
(typically ~tens of GeV). ho
Nucleus

Broad angular distribution.
Higher occupancy events.
- CCQE beam neutrino interactions
Few-GeV energy.
Neutrinos travel along beam direction.

- Typically “clean” interactions — primary
lepton (e,u) and minimal hadronic activity.
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Clustering

400 —-100

First approach: cluster reconstructed spacepoints in 3D.
Draw potential connections between 3D spacepoints.

- Classify edges as true or false based on whether the same underlying simulated
particle was responsible for producing them.
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Message-passing networks
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@ cINCINNAT
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arxiv:1810.06111

- Message-passing network aggregates information from neighlbbouring nodes across edges to form new
features on each node, utilising an attention mechanism to weight up useful edges.

- Repeat the same network multiple times in order for information to travel further across the graph over multiple

iterations (the “message passing”).

- Edge classifier:

Input for each node is the features of incoming and outgoing nodes.

- Two multi-layer perceptrons, using Tanh and sigmoid activations.

- Qutputs sigmoid score on each edge.

- Node classifier:

- Uses edge score to aggregate each node’s features with incoming & outgoing edges as input.

- Two multi-layer perceptrons with Tanh activation.

- Produces new features for each node.
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Message-passing network
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Start with graph node features

‘ (nit position, amplitude,
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Message-passing network

4\/1%%)
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and outgoing node

\_/ Form edge features by
L\ pulllng in features from incoming
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Message-passing network

Perform convolutions on
edge scores to form a set
of class-wise probabilities
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Message-passing network
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GNNs for Reconstruction
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Propagate features from each
node to adjacent nodes,
weighted by edge score

in LArTPCs - J. Hewes — 4th December 2020
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Message-passing network

Perform convolutions
‘ to form new node features
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration O
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 1
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Message-passing network

Repeating this process causes
iInformation to spread across
the graph

lteration 2
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Spacepoint reconstruction

Moving from three 2D representations of an energy deposition to one 3D
representation is a noisy procedure.

Early attempt: utilise graph node classification to retain good 3D
representations and remove spurious ones.

- Construct graph edges using k-nearest-neighbour (KNN) technique.
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Spacepoint clustering

- Investigated use of PointNet++ spacepoint graph network (arxiv:1706.02413).
- This network is specifically designed to operate on point clouds.
- Utilises set abstraction to aggregate local features, similar to a U-net for CNNs.

- PyTorch implementation of up & down-sampling too slow for large point clouds.

skip link concatenation

—> -
unit interpolate unit
pointnet pointnet

interpolate

Classification

.
.

.
g

sampling & = pointnet ~ sampling & pointnet
grouping grouping
N VAN J
Y Y
set abstraction set abstraction

pointnet fully connected layers
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2D approaches

The 3D approaches explored were not found to be effective.

Only learn marginally above noise level.

@ cINCINNAT

Next step: investigate reconstruction of interactions in 2D representations.

Conceptually closer to LHC approach.

Can leverage structure of detector to sparsify number of edges and reduce graph size.
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D reconstruction

"I Induction 1

"I Induction 2

@ cINCINNAT

Alternate approach: start with 2D
representation and build up using graph
network.

Colour coded according to true simulated
particle.

Three 2D representations of the same 3D
interaction.

‘I Collection
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Vy graph construction

- Connect hits that are adjacent in wire and time with potential edges.

- Potential edges drawn in grey between nodes.

12000 -

11000 -

10000 -

9000 4

8000

1.3GeVv,->pu +p

4600 4800 5000 5200 5400 5600

GNNs for Reconstruction in LArTPCs - J. Hewes — 4th December 2020

23



Vy graph construction

@ cINCINNAT

Potential graph edges formed for hits in close proximity (5 wires & 50 time

ticks).

Potential edges then classified as hadronic, muon, shower or as an

objective for learning.
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- Edges are classified as

if the two hits were
not produced by the
same particle in the
underlying simulation.

- Muon edges are hits

produced by the primary
muon, shower edges by
the primary electron, and
hadronic edges are the

remainder.
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Ve graph construction

@ cINCINNAT

Potential graph edges formed for hits in close proximity (5 wires & 50 time

ticks).

Potential edges then classified as hadronic, muon, shower or as an

objective for learning.
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- Edges are classified as

if the two hits were
not produced by the
same particle in the
underlying simulation.

- Muon edges are hits

produced by the primary
muon, shower edges by
the primary electron, and
hadronic edges are the

remainder.
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Multihead attention message-passing network

- Build on Exa. TrkX binary edge classifier.

Produce 4 edge attention scores on each edge.

- Take the softmax of those edges with each iteration.

Pass messages + form node features independently for each class.

If an edge is strongly shower-like, the track-like classes will be weighted down
accordingly.

Input
graph

Input
network

Edge
network

(4 edge
scores)

Softmax + activation

Node
network

(scatter
add node
features
for each
class)

Edge
network

(4 edge
scores)

—>

Softmax + activation

Node
network

(scatter
add node
features
for each
class)

Edge
network

(4 edge
scores)

=

Softmax

Class scores
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True label

2

muon hadronic

shower

false

@ cINCINNAT

D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.

Performs well on showers, but still room for improvement in tracks.

-0.9

- 0.8

- 0.7

hadronic, muon, shower,

false shower muon hadronic
Assigned label

GNNs for Reconstruction in LArTPCs - J. Hewes — 4th December 2020 27



label

True

shower muon hadronic

false

@ cINCINNAT

D edge classification network

Current iteration achieves 84% accuracy in classifying graph edges.

Performs well on showers, but still room for improvement in tracks.

0 Ground truth

- 0.7

Model output

hadronic, muon, shower,

false shower muon hadronic
Assigned label
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Next steps

In current setup, the three views are categorised independently.

University of

CINCINNATI

Match hits produced concurrently in time to allow information flow between views.

Message-passing between planes may aid with clustering within each plane.

Long-term goal: combine with heterogeneous graph nodes such as LArTPC optical

detector system for time matching.
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Next steps

- Edge classification was a natural fit for track-forming in HL-LHC.

- Clearly shows promise in neutrino physics too, but less well-suited to the problem
of clustering hits into dense objects.

- Need a scheme to collapse disparate classified edges into objects.

- Objective function scores each edge independently, and doesn’t have any
wider context.

- Considering newer techniques such as graph pooling and instance segmentation.

- Move beyond simple CCQE interactions to more complex event topologies
- Build more sophisticated definitions of the ground truth.

-+ Scale up from 2D representations to 3D.
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