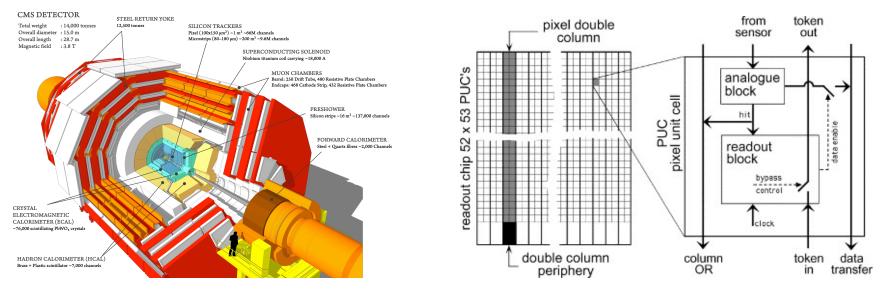
GNNS FOR RECONSTRUCTION AT THE LHC

Savannah Thais CLARIPHY Topical Meeting 12/04/2020

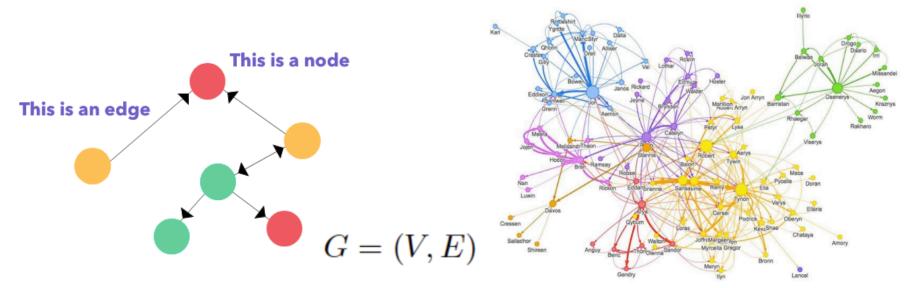
LHC Data

- Collision data measured by dedicated subsystems
 - Quantifies interactions with highly granular detectors
 - Readouts must be reconstructed into particle components (tracks, clusters) then full particle candidates and event information
- Challenge: data is often sparse and not fixed size
 - Traditionally stored in tree structures
 - For ML applications often 'forced' into matrix representations



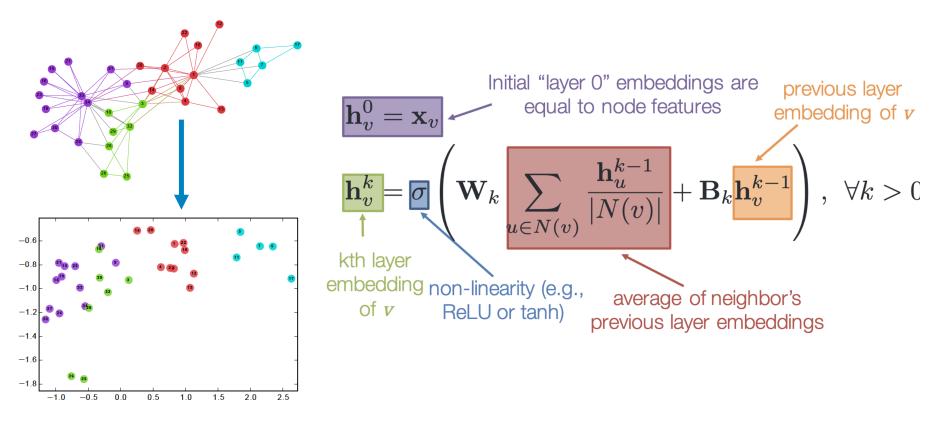
Graphs

- A graph is a mathematical structure composed of:
 - Nodes: vertices with associated information (spatial coordinates, features, etc)
 - Edges: connections between nodes
 - · Can be directed or undirected
 - Can have associated information
- Graphs can represent many types of relational/geometric data
- Graphs can be multilevel (nodes are encoded graphs)



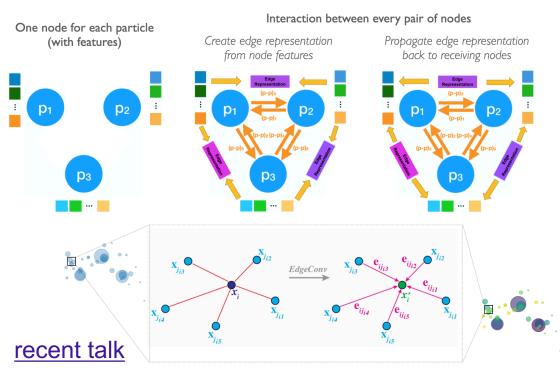
Graph Neural Networks

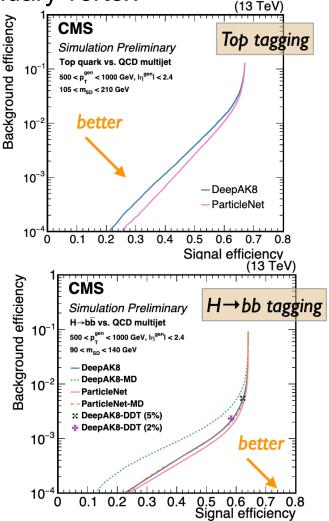
- GNNs learn a smart embedding of the graph structure
- Leverage geometric information by passing and aggregating messages from neighbors
- Practically, W_k and B_k are shallow neural networks



GNNs for Jet Tagging

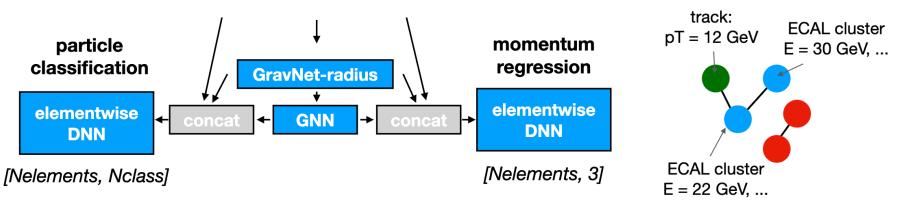
- ParticleNet graph convolution architecture
 - Each node is a reconstructed particle or secondary vertex
 - Edges formed by kNN
- Multiclass tagger for t/W/Z/H outperforms current CMS taggers

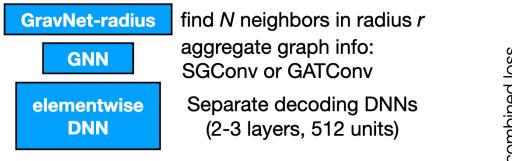




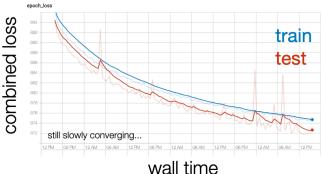
GNNs for Particle Reconstruction

- GravNet architecture to form ParticleFlow candidates
 - Each node is a PF element (track, calo clusters, etc)
 - Edges formed by dynamic kNN or radius graph
- Encode with DNN then process with GCN or Highway Networks



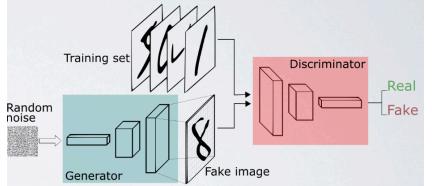


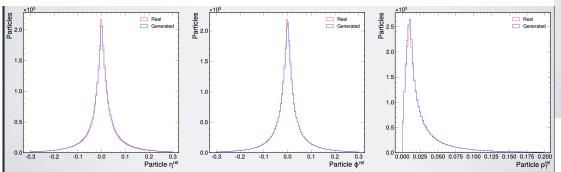
recent talk

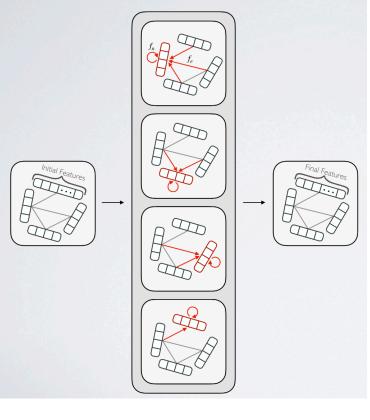


GNN GANs

- Graph based Generative Adversarial Network
 - Generator uses message passing on noise graph to recreate input features
 - Discriminator uses message passing to classify graph
- Using jet dataset, can recreate particle eta, phi, p_T with high fidelity





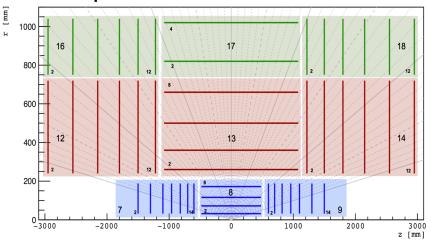


recent talk

GNNs for Tracking

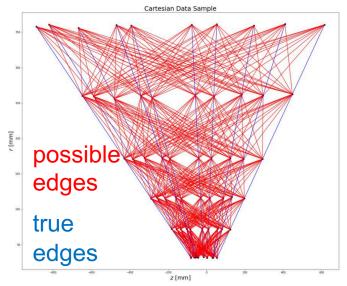
Basic procedure

- 1. Form initial graph from spacepoints/hits (pre-processing)
- 2. Process with GNN to get probabilities of all edges
- Apply post-processing algorithm to link edges together into tracks and get parameters



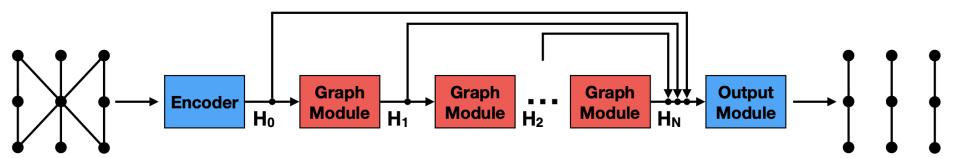
Many places to improve/innovate

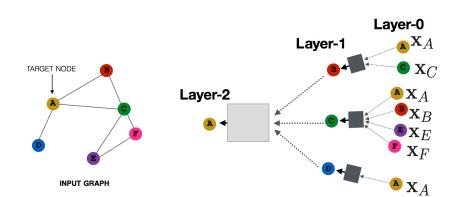
- Graph construction, architectures, data augmentation...
- Most work shown here uses
 <u>TrackML dataset</u>
 - Open, experiment agnostic
 - 200 PU, silicon semiconductor detector

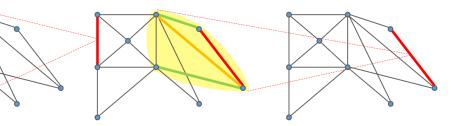


Edge Classifiers

- Graph Modules are core component:
 - Run <u>node</u> and <u>edge</u> convolutions
 - Update features of both
 - Each message passing function is a
 FCN
- Graph modules are often recursively connected
 - Allows aggregation of progressively more distant information
 - Weights can be shared across modules



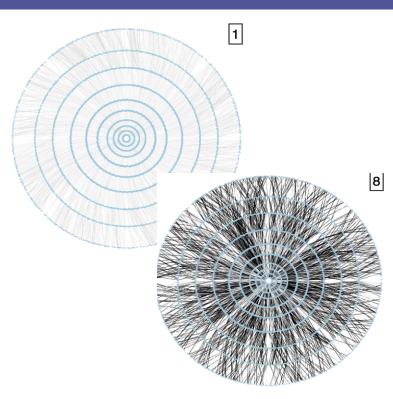


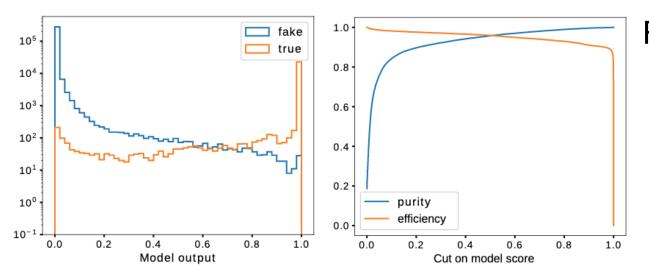


Proof of Principle

NeurIPS 2019 ExaTrkX architecture:

- Node and edge features embedded in latent space
- 8 graph modules with shared weights
- Initial embeddings concatenated at each module
- Each FCN has 128 hidden features and ReLU activation





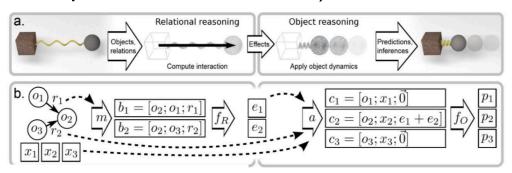
Results:

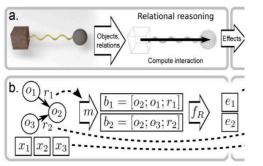
- 95.9% edge efficiency (*true* edges/possible)
- ~95% track finding accuracy (all edges merged)
 Paper

Interaction Networks

Applies relational and object models in stages to infer abstract interactions and object dynamics

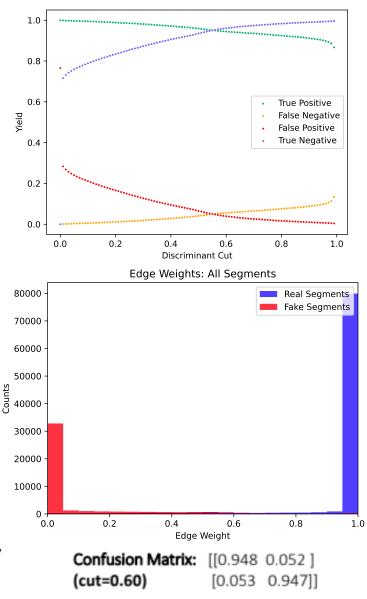
- Relation and object models are FCNs
- Total of 89,400 parameters (smaller than previous architecture)





Results:

- 95% edge efficiency
- Tracking efficiency still being measured

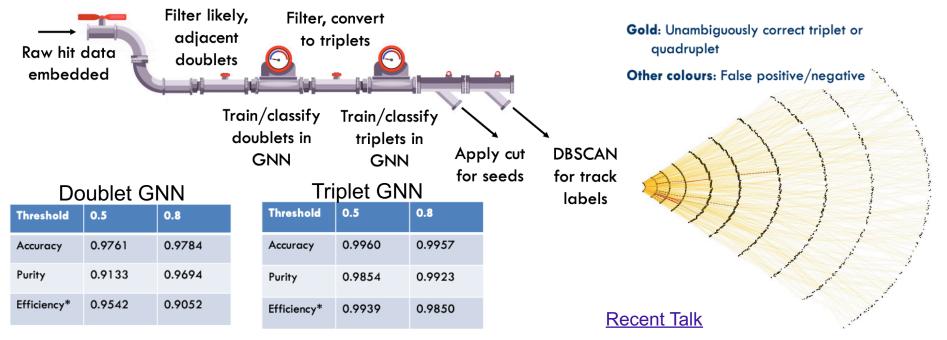


Paper, Recent Talk

Embedding

Improve graph efficiency by embedding features

- Embed features in N-dimensional space where hits from same tracks are close to each other
- Score "target" hit within embedding neighborhood against "seed" hit at center
- Filter by score to create seed-to-target doublets, doublets form the graph
- Can repeat with embedding triplets as edges, creating 'n-plet' graphs



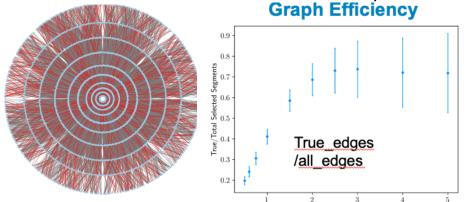
Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

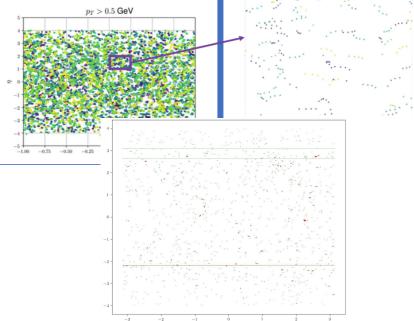
'Current' Methods

- Layer pairs: create edges between nodes in adjacent layers within a $\Delta \phi / \Delta r$ range
- Layer pairs+: allow edges within a layer
- kNN: form edges between a hit and its k closest neighbors (can customize distance metric)



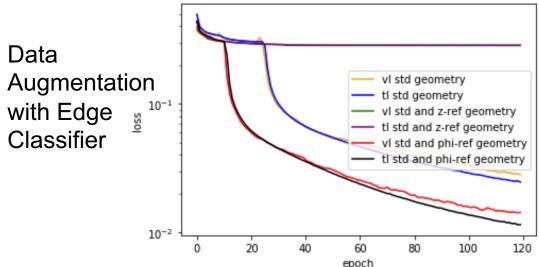
Exploratory Methods

- Dynamic kNN
- Learned clustering
- DBScan in eta-phi space

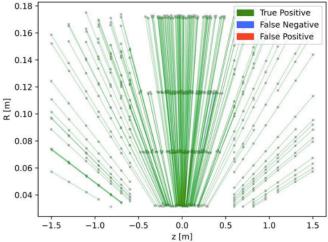


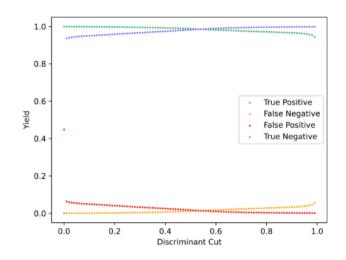
Data Augmentation

- Including endcaps:
 - Difficult in layer pairs construction due to edge ordering
 - Initial studies in pixel detector only, typically improve edge efficiency
- Dropping layers from graph construction
 - Reduce size of graph while maintaining track finding efficiency
- Applying z and phi reflections
 - Break symmetry of detector to possibly enhance learning



Pixel IN with Endcaps





Instance Segmentation GNNs

- Instance segmentation: computer vision task of identifying instances of an object in an image and forming pixel mask
- After message passing, node state vectors are used as input to three branches:
 - Classification branch identifies the node as signal or background
 - Localization branch predicts a bounding box for each node
 - Ellipses merged and scored to create track clusters
 - Tracking branch predicts track parameters

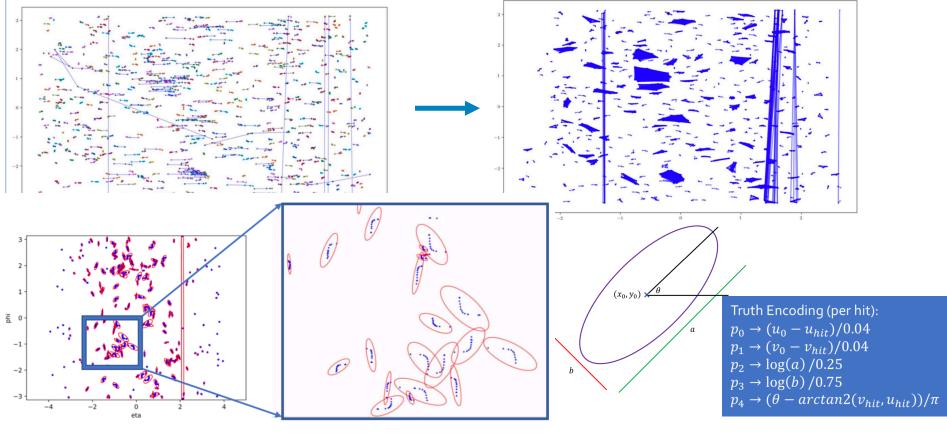
Vertex state

initializatio

Input Graph Auto-Registration (h^t) Prediction Graph neural network with T iterations Message Passing (f^t) MLP_{cls} M MLP Classification Re-Embedding (g^t) Aggregate MLP MLP_{loc} -- Box **Repeat T Times** MLP MLP_{loc} Box Classification Localization Localizatior t = 1Branch Branch $\Delta x_i^t = MLP_h^t(s_i^t)$ **Box Merging** $e_{ij}^{t} = MLP_{f}^{t}([x_{j} - x_{i} + \Delta x_{i}^{t}, s_{j}^{t}])$ $s_i^{t+1} = M P_a^t(Max(\{e_{ij} \mid (i,j) \in E\})) + s_i^t$ **PointGNN Paper**

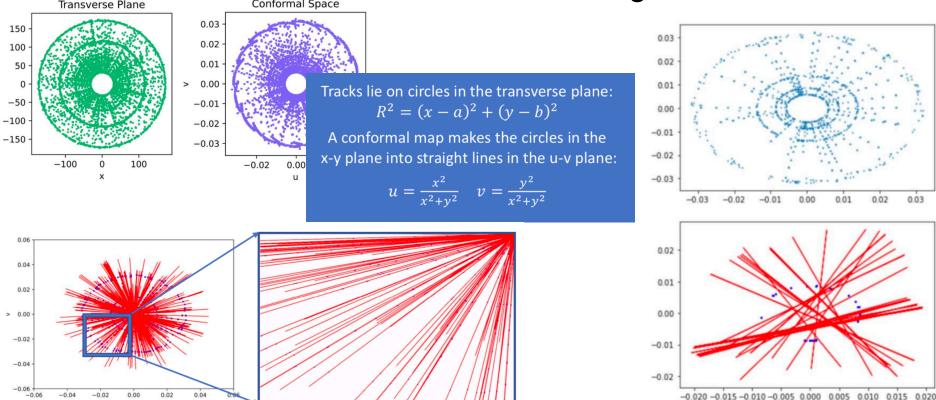
Elliptical Bounding Boxes

- Construct graphs using DBScan in eta-phi space
- Bounding ellipses parameterized with 5 degrees-of-freedom
- Encoded ellipses with each node for training



Conformal GNNs

- Conformal transformation map tracks to straight lines
 - · Can extract track parameters directly from linear fit
- Run instance segmentation GNN in conformal space to find tracks and calculate parameters in a single shot



On-going Tracking Studies

- Optimize parameters of existing graph construction algorithms and explore new ones
- Refine track formation algorithm for edge classification architectures
- Improve existing architectures
 - Include external effects in IN, optimize embedding...
- New ideas
 - Timing information, Hough transforms, graph kernels...
- Test performance in LHC experiment environments
- Exploring hardware acceleration with FPGAs

Conclusions

- Graphs are a natural representation of particle detector data
- Graph-based learning methods can leverage geometric information for effective reconstruction
 - Graph classification for jet tagging
 - High-level node features for particle object reconstruction
 - Graphs as nodes for simulation
 - Optimal transport on graphs for event-level analysis (1919)
 - Edge classification and instance segmentation tracking
- Geometric deep learning is synergistic with particle physics
 - Rich and exciting area of research!

Thank you! Happy to answer any questions!

Sthais@princeton.edu

Sigma basicsciences av