Physics at the Energy Frontier post HL-LHC: opportunities and challenges

Gabriella Sciolla

Brandeis University

Higgs Physics Working Group of the BRN for HEP R&D Study

Co-Conveners: J. Hirschauer and G. Sciolla Members: M. Begel, M. Narain

2021 CPAD Workshop

March 18, 2021

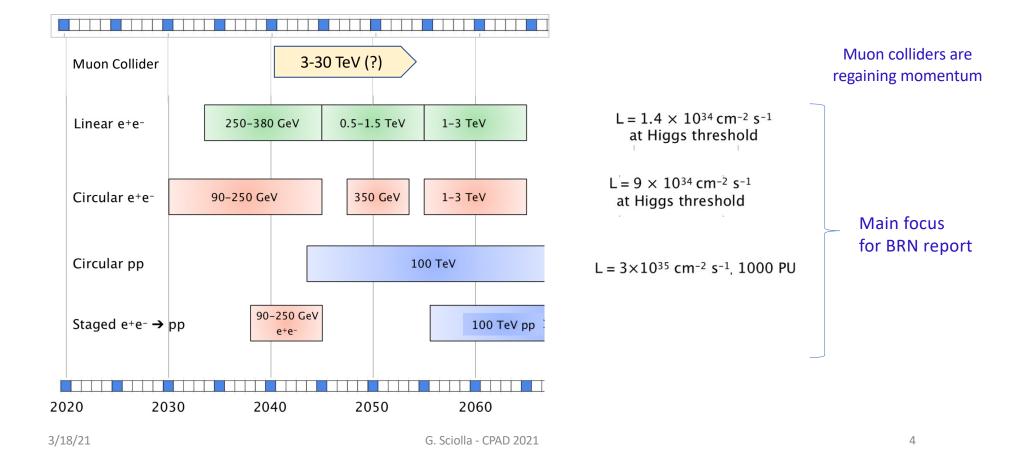
Introduction

Goal of this presentation

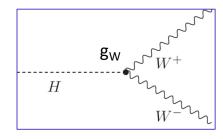
- Summarize physics opportunities at collider post HL-LHC
 - <u>What</u> are the measurements that will enhance our understanding of Particle Physics
 - Where: collider and experiments
 - <u>When</u>: very tentative timescale
- Summarize experimental challenges that we need to overcome
 - Tracking
 - Calorimetry
 - Precision timing
 - Trigger and readout

References

- European Strategy Physics Briefing Book, CDRs for future Detectors, CPAD reports
- Snowmass 2021


3/18/21

G. Sciolla - CPAD 2021


The need for future colliders

- SM has been extremely successful but we know it is incomplete
 - Naturalness problem
 - Higgs mass and its quantum correction indicate extreme fine tuning in the theory
 - Missing particles
 - e.g.: DM candidate
- Two complementary approaches to discover New Physics
 - Search for new particles/phenomena beyond SM
 - "Classic" BSM searches (e.g.: di-jet or di-lepton resonances, SUSY.,...)
 - Long-Lived particles
 - DM (pair) production
 - Precision measurement of properties of Higgs and other SM particles (top, W, Z,...)
 - Measurement of couplings of H to other particles (fermions/bosons, DM, ...)
 - These measurements will see a qualitative improvement, not just incremental
 - Example: limits of Higgs to DM particles are now 20% and will be <0.02%
 - Measurement of Higgs self couplings
 - Hard to measure at (HL-)LHC, will be measured within a few % at future colliders

Opportunities on the horizon

Higgs #1: H couplings to fermions and bosons

 $\kappa = (g_W)^{obs}/(g_W)^{SM}$

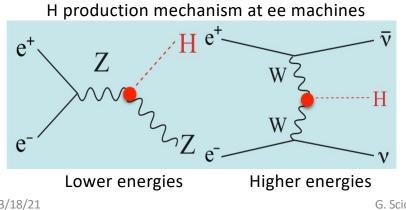
• HL-LHC will achieve %-level precision on the measurement of the Higgs coupling to most particles in the SM

- Even on coupling to $\boldsymbol{\mu}$ and top
- Next generation colliders will drastically improve
 - Sub-percent precision in all channels
 - Measure last coupling (κ_c)

\rightarrow Improvement up to x10!

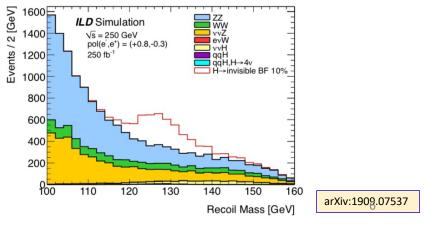
** Assume $K_V < 1$

 $\overset{\star}{_{3/18/21}}\mathsf{FCC}\text{-}\mathsf{ee}_{\mathtt{240GeV}}+\mathsf{FCC}\text{-}\mathsf{ee}_{\mathtt{365GeV}}+\mathsf{FCC}\text{-}\mathsf{eh}_{\mathtt{3.5TeV}}+\mathsf{FCC}\text{-}\mathsf{hh}_{\mathtt{100TeV}}$


G. Sciolla - CPAD 2021

Unce	ertainty in %	on ĸ
	HL-LHC	FCC-Comb
Kw [%]	0.985**	0.19
K Z [%]	0.987**	0.16
Kg [%]	2	0.5
Κ γ [%]	1.6	0.31
Κ Ζγ [%]	10	0.7
K _C [%]		0.96
K t [%]	3.2	0.96
K b [%]	2.5	0.48
Κ μ [%]	4.4	0.43
Κτ [%]	1.6	0.46

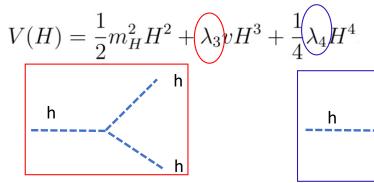
x10!

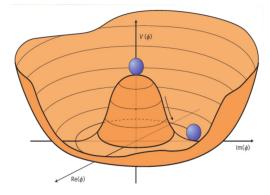

Higgs #2: search for $H \rightarrow$ dark matter

- Drastic improvement expected at future machines
- Lepton colliders
 - Exploit clean production mode in HZ and Hvv
 - \rightarrow inclusive reconstruction
- Hadron colliders
 - H produced in VBF or ttH

Limit	s on Higgs	BR to DI	M (invisible)	particles
	LHC 2020	HL-LHC	ILD 250	FCC-comb
BR_{inv}	<20%	<1.9%	0.28%	<0.024%

3 orders of magnitude improvement w.r.t. current knowledge !

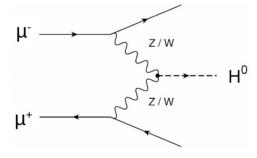



3/18/21

G. Sciolla - CPAD 2021

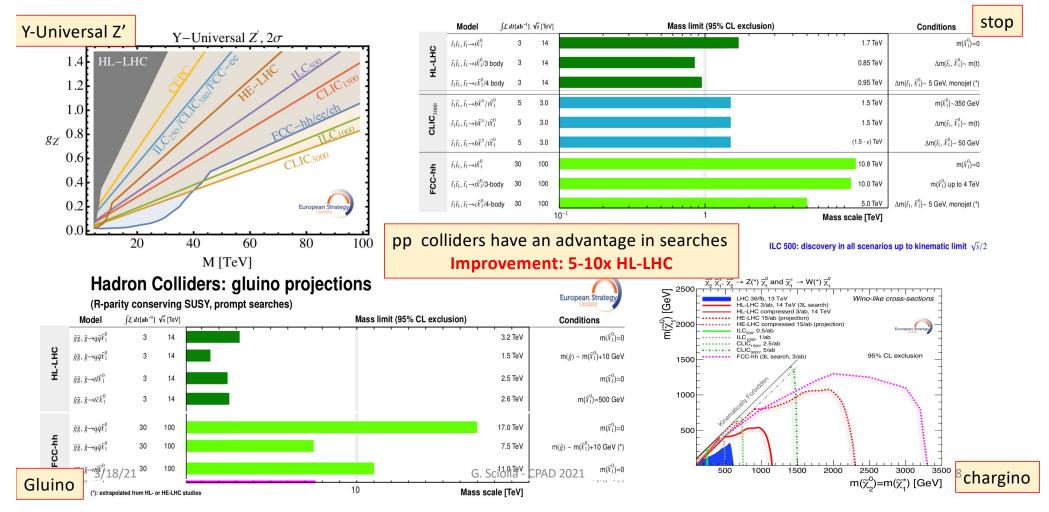
Higgs #3: Measure shape of Higgs potential

• To understand EW symmetry breaking we need to understand the Higgs potential



- Future colliders will improve tremendously on the HL-LHC
 - FCC-comb can measure κ_3 to 5%
 - 10x improvements over HL-LHC from FCC!
 - Muon colliders can measure κ_3 to 2%
 - 25% @ 3 TeV, 5% @ 10 TeV, 2% @ 30 TeV
 Snowmass 2021

Prec	ision on H	iggs self cou	pling κ_3
	HL-LHC	FCC-comb	μ collider
К3	50%	5%	2%


h

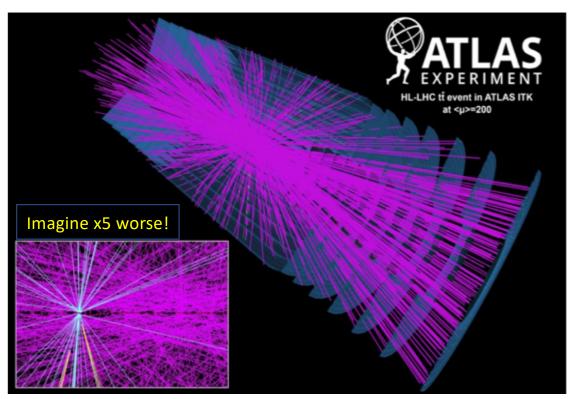
3/18/21

G. Sciolla - CPAD 2021

Direct searches for new particles

Experimental challenges @ 100 TeV pp colliders

• Extremely harsh environment


- Pileup: ~1,000 5x HL-LHC
- Radiation: 100x HL-LHC
 - 1×10¹⁸ n/cm² for innermost tracking layer

10x HL-LHC

- 300 MGy for innermost tracking layer
- Occupancy:
 - 20 GHz/cm² in innermost tracking layer

• Kinematics

- Dynamic range: 10x HL-LHC
 - From few GeV (Higgs) to 20 TeV (searches)
- |eta|<6 2x HL-LHC
 - More energy, more forward particles
- Angular resolution: 10x HL-LHC
 - 10 mrad separation in highly collimated jets
- Calorimeter thickness 2× HL-LHC

Detectors designed for "particle flow" reconstruction \rightarrow high granularity for separating tracks and energy deposits

Technical requirement #1:

Tracking: low-mass, high-granularity, 4D Si detectors

Measurement	Technical Requirement (TR)	
TR 1.1: Tracking for e^+e^-	TR 1.1.1: $p_{\rm T}$ resolution: $\sigma_{p_{\rm T}}/p_{\rm T} = 0.2\%$ for central tracks with $p_{\rm T} < 100$ GeV, $\sigma_{p_{\rm T}}/p_{\rm T}^2 = 2 \times 10^{-5}/{\rm GeV}$ for central tracks with $p_{\rm T} > 100$ GeV TR 1.1.2: Impact parameter resolution: $\sigma_{r\phi} = 5 \bigoplus 15 \ (p \ [{\rm GeV}] \sin^{\frac{3}{2}}\theta)^{-1} \ \mu{\rm m}$ TR 1.1.3: Granularity : $25 \times 50 \ \mu{\rm m}^2$ pixels TR 1.1.4: $5 \ \mu{\rm m}$ single hit resolution TR 1.1.5: Per track timing resolution of 10 ps	 1) Excellent p_T resolution at low p_T → Very low-mass detectors LC: no active cooling 2) Impact parameter resolution 3) Good granularity
TR 1.2: Tracking for 100 TeV pp	Generally same as e^+e^- (TR 1.1) except TR 1.2.1: Radiation tolerant to 300 MGy and $8 \times 10^{17} n_{eq}/cm^2$ TR 1.2.2: $\sigma_{p_T}/p_T = 0.5\%$ for tracks with $p_T < 100$ GeV TR 1.2.3: Per track timing resolution of 5 ps rejection and particle identification	

3/18/21

G. Sciolla - CPAD 2021

Technical requirement #1:

Tracking: low-mass, high-granularity, 4D Si detectors

Measurement	Technical Requirement (TR)	
TR 1.1: Tracking for e^+e^-	TR 1.1.1: $p_{\rm T}$ resolution: $\sigma_{p_{\rm T}}/p_{\rm T} = 0.2\%$ for central tracks with $p_{\rm T} < 100$ GeV, $\sigma_{p_{\rm T}}/p_{\rm T}^2 = 2 \times 10^{-5}/{\rm GeV}$ for central tracks with $p_{\rm T} > 100$ GeV TR 1.1.2: Impact parameter resolution: $\sigma_{r\phi} = 5 \bigoplus 15 \ (p \ [{\rm GeV}] \sin^{\frac{3}{2}}\theta)^{-1} \ \mu{\rm m}$ TR 1.1.3: Granularity : $25 \times 50 \ \mu{\rm m}^2$ pixels TR 1.1.4: $5 \ \mu{\rm m}$ single hit resolution TR 1.1.5: Per track timing resolution of 10 ps	Similar to ee detectors except for: 1) Harsher environment → Radiation hard detectors and electronics
	Generally same as e^+e^- (TR 1.1) except TR 1.2.1: Radiation tolerant to 300 MGy and $8 \times 10^{17} n_{eq}/cm^2$	2) Less stringent requirements on p_T resolution at low p_T
TR 1.2: Tracking for 100 TeV pp	TR 1.2.2: $\sigma_{p_{\rm T}}/p_{\rm T} = 0.5\%$ for tracks	3) Timing is more crucial (pileup)
	with $p_{\rm T} < 100 \ {\rm GeV}$ TR 1.2.3: Per track timing resolution of 5 psrejection and particle identification	 4) 5µm resolution needed for 2-track separation in collimated jets and high pileup

Detector requirement #2: Calorimeters: high-granularity, 5D with 10⁶ dynamic range

TR 1.3: Calorimetry for e^+e^-	TR 1.3.1: Jet resolution: 4% particle flow jet energy resolution	 4% jet energy resolution for Higgs total width (in ZH)
	TR 1.3.2: High granularity: EM cells of $0.5 \times 0.5 \text{ cm}^2$, hadronic cells of $1 \times 1 \text{ cm}^2$	 2) High granularity → High position resolution
	TR 1.3.3: EM resolution : $\sigma_E/E = 10\%/\sqrt{E} \bigoplus 1\%$	3) Necessary for H/Z decays \rightarrow e/ γ
	TR 1.3.4: Per shower timing resolution of 10 ps	(1) Timing for particle ID long lived
TR 1.4: Calorimetry for	Generally same as e^+e^- (TR 1.3) except	4) Timing for particle ID, long-lived particles
	TR 1.4.1: Radiation tolerant to 4 (5000) MGy and 1016 (5 ± 1018)	
	$3 \times 10^{16} \ (5 \times 10^{18}) \ n_{eq}/cm^2$	
	in endcap (forward) electromagnetic calorimeter	
$100 { m TeV pp}$	TR 1.4.2: Per shower timing resolution of 5 ps	

- Particle flow will be necessary to deliver the resolutions necessary
- Particle flow needs excellent energy and position resolution

3/18/21

G. Sciolla - CPAD 2021

Detector requirement #2: Calorimeters: high-granularity, 5D with 10⁶ dynamic range

TR 1.3: Calorimetry for e^+e^-	TR 1.3.1: Jet resolution: 4% particle flow jet energy resolution TR 1.3.2: High granularity: EM cells of $0.5 \times 0.5 \text{ cm}^2$, hadronic cells of $1 \times 1 \text{ cm}^2$ TR 1.3.3: EM resolution : $\sigma_E/E = 10\%/\sqrt{E} \bigoplus 1\%$ TR 1.3.4: Per shower timing resolution of 10 ps	Similar to ee detectors except for:
TR 1.4: Calorimetry for 100 TeV pp	Generally same as e^+e^- (TR 1.3) except TR 1.4.1: Radiation tolerant to 4 (5000) MGy and 3×10^{16} (5×10^{18}) n_{eq}/cm^2 in endcap (forward) electromagnetic calorimeter TR 1.4.2: Per shower timing resolution of 5 ps	 1) Radiation tolerance requirement much more stringent (exp. Forward) 2) More stringent timing requirements

Particle flow will be necessary to deliver the resolutions necessary

• Particle flow needs excellent energy and position resolution

3/18/21

DOE BRN Study on HEP Detector R&D Report

due to pileup

Detector requirement #3: High-bandwidth, low-latency trigger and readout

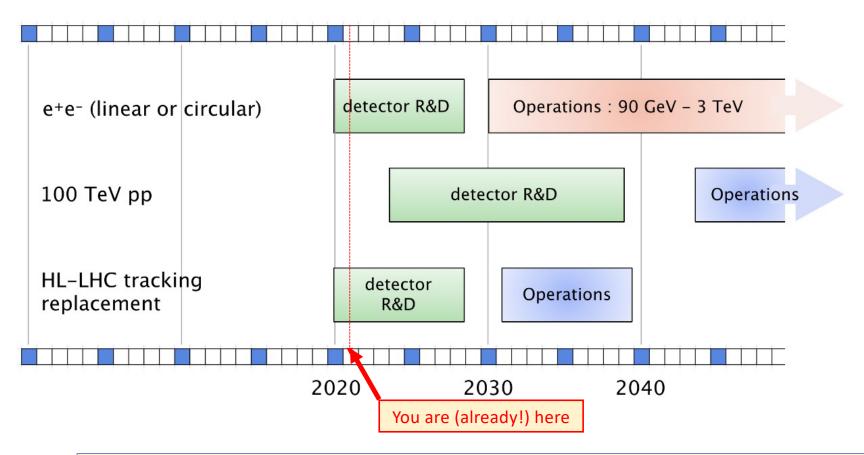
TR 1.5: Trigger and readout	TR 1.5.1: Logic and transmitters with radiation tolerance to 300 MGy and $8 \times 10^{17} n_{eq}/cm^2$ TR 1.5.2: Total throughput of 1 exabyte per second at 100 TeV pp collider
--------------------------------	---

1) Electronics needs to be rad-hard, especially at pp colliders

2) 10 TeV pp detector: High granularity (particle flow) → 20 billion channels → 1 exabyte/s of raw data w/o localized processing and on-detector reconstruction: 1,000x HL-LHC!
 To reduce this data to something manageable, we need low-latency and low-power processing using rad-hard ASICS, FPGAs, RISC processors using Artificial Intelligence/Machine Learning technologies.

3/18/21

G. Sciolla - CPAD 2021


Common themes for detector requirements

- Precision timing will be key
 - 5-10 ps per particle resolution needed for both charged and neutral particles
 - Lepton colliders: essential to reduce beam-induced background
 - Hadron colliders: essential to manage pileup effects and radiation effects, especially in forward region
- Detectors and electronics need to be very radiation-hard
 - Innermost layer of barrel tracker
 - Silicon lattice displacement damage: 1x10¹⁸ neq/cm²
 - Total Ionizing Dose: 300 MGy
 - Forward Calorimeter 2.5 $|\eta|$ < 6
 - 5x10¹⁸ neq/cm², 5,000 MGy
 - Radiation levels are up to ~ 1,000x HL-LHC

Conclusion

- Many physics opportunities ahead will allow us to make major progress in our understanding of Particle Physics
 - Direct searches for new BSM particles
 - Indirect searches using precision tests of the Standard Model (e.g.: Higgs couplings)
- Many accelerators have being proposed for the decades to come
 - Lepton colliders: ee linear and circular colliders, muon colliders
 - Hadron colliders: post-LHC pp machines will allow us to explore higher energies
- While operation of (some of) these accelerators is far in the future, there is <u>a lot</u> of detector R&D that needs to take place
 - If we want a bright future for our students, R&D needs to ramp up <u>now</u>

Operations vs. R&D

3/18/21 Detector R&D needs to start ~ now if we want to have these opportunities in the future

17