Particle tracking at light speed with quantum dots

T. Mahajan¹, A. Minns¹, V. Tokranov¹, M. Yakimov, S.Oktyabrsky¹, P. Murat², M. T. Hedges³

¹SUNY Polytechnic Institute Albany, ²Fermi National Accelerator Laboratory, ³Purdue University

Can we transition beyond the charge-drift paradigm a la Si?

• What if we could use light collection for trackers and/or fast timing?

- Thin detector (small X₀)
- Small pitch
- Fast light emmission (< 1 ns)
- High light yield
- Integrated photodetector
- Low power
- Radiation hard

Lab-grown InAs quantum dots (QDs) embedded in GaAs semiconductor

- 1. Quantum Dot Scintillator (QDS) shown in orange
 - Thin layers of QDs sandwiched between thin layers of GaAs semiconductor
 - Total detector thickness of ${\sim}20~\mu\text{m}$
 - Ionizing particle produces e^-/h pairs in GaAs
 - Charges quickly absorbed by QDs (~few ps)
 - Excited state QDs emmit photons as they transition to ground state
 - + QD emission time of $\sim 1~\text{ns}$
 - 1.1 eV emitted photons resulting in low photon self-absorption ($\sim 1 \ {\rm cm}^{-1})$
- 2. Photosensor physically integrated ${\sim}1~\mu\text{m}$ thick InGaAs photodiodes

Phase α : QDS performance with 5.5 MeV α 's (P. Murat, CPAD 2019)

Energy

Timing

Measured 10⁴ e^- / MeV with ~100 ps rise times (in photovoltaic mode!) → Fastest and highest light-yield of any known scintillator

Back to earth

Understand physics of uncommon sensor

- We need to understand our inefficiencies
 - Where does our ${\sim}10\%$ energy resolution limit come from?
 - Perhaps nonuniformities in MBE growth?
 - Other ideas not yet thought of?
 - How can we improve our light collection efficiency?
 - Design new sensors with larger PD coverage

Building a tracker: "One \rightarrow Few \rightarrow Many"

• Big near-term goal: Demonstrate 2 channel coincidence

Feasibility for HEP applications

- We need to demonstrate effectiveness in MIP detection
- Start with transition from 5 MeV \rightarrow 60 keV line from Am-241
- Will require longer integration times for short term measurements
- Sophisticated electronics and readout required for fast MIP detection
 - Expect signals of thousands of e^- in 100s ps