New Frontiers in On-Chip Image Processing

Richard Younger

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) and the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of Defense for Research and Engineering or the United States Government.

©2021 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

CPAD Instrumentation Frontier Workshop 2021

March 18-21, 2021

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Evolution of High Performance Imagers

Year

ROIC Fabrication Technology Landscape

 How can we bring advanced processing ROICs to more applications?

Increase hardware modularity and reconfigurability to reuse ROICs and amortize costs

Hardware Modularity: Split the ROIC

Tier 3	Waveband Specific Detector Array
Tier 2	Detector Specific Analog Interface
Tier 1	Reconfigurable Digital Circuit with Integrated FPGA Processing

- Advanced CMOS
- 1280 × 1024
- 12µm pitch

Demonstrating Modularity and Reconfigurability

Using Smart Imagers

Multimodal Sensing

Self-trigger a change in sensing based on events

. 8. 8. 8. 오							
solve trol							
lime Resolved Control							
Ē							
<u>96 - 96 - 96 - 96</u>							
Passive Control							
Event Sensing							
Output							

Machine Learning

CNNs are feasible to implement on-chip

Conventional Processing

Many types of on-chip processing at rates in excess of 100,000 FPS

More sophisticated adaptive processing is possible in-pixel and in-array

Relmagine ROIC Status

- Multiple partners with Griffin tier-2 chips
- Griffin T1-only hardware development kit shipped January 2021

- Multiple partners in process of tier 2 design
- Anticipate at least one bonded assembly to begin late 2021
- Demo camera in 2022

What's next?

Near Future

- Demonstration cameras
- Design refinement
- Open to collaborations on Griffin & Manticore
- Open to studying needs for science & space applications

Looking Ahead

- Is on-chip ML the path for perceptive imagers?
- Create deep stacking architectures for full modularity
- Abuttability

Thank You

younger@ll.mit.edu

MIT/LL Relmagine Team

Rich Younger	Maria Blood	Renee Lambert	Tim Gagnon
Valerie Finnemeyer	Glenn Garvey	Donna Yost	Erik Duerr
Jon Frechette	Kate Gillis	Sandra Lee	Eric Dauler
Sue Burzyk	Philemon Chose		Dan Ripin
Brian Tyrrell		Hannah Whisnant	Kaitlyn Dixon
	Kate Thurmer	Praneeth Vepakomma (MIT)	Stephan Chase
Matt Stamplis	Jordan Lahanas	Tom Karolyshyn	Kenny Sims
Jonathan Leu	Tom Ross	Greg Rowe	Elaine Swenson
Peter Grossmann	lan Brown		
		Farhan Adil	
Matt Gregory	Tony Kryzak	Phillip Bailey	
George Jordy	Austin Holloway	Hernan Castro	Designing and
Tom Cheng	Tony Soares	Dan Santiago	producing these chips
Jim Wey	David Volfson	Domenic Terranova	is the product of a large
Alice Lee	Jerry Lipson		team of professionals
	Tom Ferguson	Tim Smith	
Ana-Maria Mandrila Vacca	Mike Cooper	Dmitriy Kaplan	
Brian Yu		Bob D'Ambra	

- Split learning separates input data from full body of inference network
- Used hls4ml to translate character recognition split learning model in Keras to Vivado HLS
- Results: This model should, with further optimizations, fit on Griffin
 - Need to investigate network compression (pruning) & DSP re-use
 - 2D convolutional layers were a challenge for hls4ml (as of v0.1.6)

Split Learning Model	Kintex UltraScale 115	Griffin FPIA			
92,395	663,390	275,032			
634*	702	275			
3,286	5,530	1,736			
60.5	2,160	820			
* Includes image					
	92,395 634* 3,286 60.5	92,395 663,390 634* 702 3,286 5,530 60.5 2,160			

Character Recognition Model FPGA Resource Utilization

CPAD 2021 - 13 RDY MM/DD/YY Whisnant, H. K. (2020). Split learning on FPGAs (Master's Thesis, Massachusetts Institute of Technology). Duarte et al., "Fast inference of deep neural networks in FPGAs for particle physics", <u>JINST 13 P07027</u> (2018), arXiv:1804.06913.

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY