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Evolution of High Performance Imagers
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ROIC Fabrication Technology Landscape
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As density increases, so 
does cost

Ø Mistakes are expensive

Ø Only the biggest
experiments can afford to 
fabricate
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High Performance Imager Availability

• How can we bring advanced processing 
ROICs to more applications?

Ø Increase hardware modularity and 
reconfigurability to reuse ROICs and 
amortize costs
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Hardware Modularity: Split the ROIC

Through-oxide-vias (Lincoln Lab)

Direct Bond Interconnect (Ziptronix) Cu-Cu bond (Tezzeron)

2 µm
10 µm

IO pitch < 10 µm
Short interconnect lengths

2.8 µm

Tier 1

Tier 2

Tier 3

Tier 3 Waveband Specific Detector Array

Tier 2 Detector Specific Analog Interface

Tier 1 Reconfigurable Digital Circuit with 
Integrated FPGA Processing



CPAD 2021 - 6
RDY MM/DD/YY

Demonstrating Modularity and Reconfigurability

• Advanced CMOS
• 1280 × 1024
• 12𝛍m pitch

Two tier 1 chips fabricated under the 
DARPA ReImagine program

Tier 1
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Demonstrating Modularity and Reconfigurability

Programmable 
Pixel Logic

Reconfigurable 
Processing

Griffin
FPGA-based architecture

FPGA resource 
count in class 
with Kintex-7

Digital Pixel Array

Vector Processor

FPGA

Manticore
SoC-based architecture

Each 16x16 macropixel has 
comparable MOPS to a 

Pentium I

• Programmable 
pixel array 
processor

• SIMD vector 
processor

• FPGA

• Microprocessor 
control core

• Advanced CMOS
• 1280 × 1024
• 12𝛍m pitch
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Using Smart Imagers

Many types of on-chip processing at 
rates in excess of 100,000 FPS

More sophisticated adaptive processing 
is possible in-pixel and in-array

Conventional Processing

In-pixel NUC

In-array 
2D FFT
(slower)

Exceedance

Multimodal Sensing

Self-trigger a change in sensing
based on events

Machine Learning
CNNs are feasible to implement 
on-chip

CNN Layers
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ReImagine ROIC Status

Development kit

• Multiple partners with Griffin tier-2 chips 
• Griffin T1-only hardware development kit 

shipped January 2021

Packaged Die

Manticore

• Multiple partners in process of tier 2 design
• Anticipate at least one bonded assembly to begin 

late 2021
• Demo camera in 2022

Griffin
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What’s next?

• Demonstration cameras
• Design refinement
• Open to collaborations on Griffin & 

Manticore
• Open to studying needs for science & 

space applications

Looking AheadNear Future
• Is on-chip ML the path for 

perceptive imagers?  
• Create deep stacking 

architectures for full 
modularity

• Abuttability
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Thank You

younger@ll.mit.edu
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Machine Learning Feasibility

• Character recognition example using client/server split learning 
architecture
– Split learning separates input data from full body of inference network 

• Used hls4ml to translate character recognition split learning model 
in Keras to Vivado HLS

• Results: This model should, with further optimizations, fit on Griffin
– Need to investigate network compression (pruning) & DSP re-use
– 2D convolutional layers were a challenge for hls4ml (as of v0.1.6) 

Whisnant, H. K. (2020). Split learning on FPGAs (Master’s Thesis, Massachusetts Institute of Technology).
Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics”, JINST 13 P07027 
(2018), arXiv:1804.06913.

Simple split learning architecture

Character Recognition Model FPGA Resource Utilization
Resource Split Learning Model Kintex UltraScale 115 Griffin FPIA

LUTs 92,395 663,390 275,032
I/O 634* 702 275

DSP tiles 3,286 5,530 1,736
BRAM 60.5 2,160 820

* Includes image

https://dx.doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913

