

Space + Time + Brain: 4D Particle Detectors using Neuromorphic Computing

Alice Bean, Hao Li, Nicola Minafra, Chris Rogan, Judy Wu University of Kansas March 22, 2021

Now

Detector in beam

Silicon trackers can be made with good space + time resolution Cluster information

Track+jet information

Goal: move BRAIN onto detector

Detector in beam

Silicon trackers can be made with good space + time resolution Cluster information

Track+jet information

Use Neuromorphic computing (NC)

Memory and computing elements aren't separated -MEMRISTORS Neurons communicate in parallel architecture

NC systems are being developed quickly: we need to start using them with our detectors

Example of Detector

Time sequenced jet and track information

Need new algorithms including Spiking Neural Networks

Future

