Silicon Carbide: a new frontier for radiation detectors?

Giuseppe Bertuccio
Politecnico di Milano
Department of Electronics, Information and Bioengineering
and
National Institute of Nuclear Physics (INFN)
Milan, Italy
April 2001: first commercial SiC Diode

Applications
Compact Switched Mode Power Supplies

600 V - 4 A
300 V - 10 A
Today industrial SiC devices

Industrial World is already producing and using SiC devices

MOSFETs and Diodes
600 V – 1.2 kV, up to 150 A

High efficiency
DC/DC Converters, Inverters

Automotive

Renewable energy
USA R&D for SiC & GaN industrial applications

https://poweramericainstitute.org

Accelerating the next generation of power electronics.
SiC detector prototypes

Processed SiC Wafer

Microstrip

Pad

Interdigitated

Pixel

Quad
Strength of SiC for Radiation Detection

Wide Bandgap
3.2 eV

High Critical Field
(2 MV/cm)

Experimental Data

Reverse Current Density

Mean electric field (kV/cm)

J = 1 pA/cm² @ +27°C → sub-electron ENC
J = 1 nA/cm² @ +127°C → High-T operation
E=100 kV/cm → very fast, no charge trapping

Strength of SiC for Radiation Detection

- **Wide Bandgap**
 - 3.2 eV

- **High Critical Field**
 - (2 MV/cm)

Graphical Data

- **SiC**
- **4H-SiC**
- **GaAs**
- **Si**

- **E_g** (eV)
- **E_c** (MV/cm)
- **E_b** (x10 eV)
- **V_s** (10^7 cm/s)

- **J = 1 pA/cm² @ +27°C → sub-electron ENC**
- **J = 1 nA/cm² @ +127°C → High-T operation**
- **E=100 kV/cm → very fast, no charge trapping**
High Resolution X-Ray Spectroscopy with SiC pixel

- FWHM 177 eV (9.6 e\(^-\) rms) +100 °C
- FWHM 120 eV (6.5 e\(^-\) rms) +28 °C
SiC detector under floating temperature

Bandgap energy (e-h pair creation energy) : minimum temperature coefficient

SiC microstrip detector

ΔT_{max} 140 K

T_{max} +110 °C

T_{min} -30 °C

Counts

Energy (keV)

0 10 20 30 40 50 60

10h floating T (ΔT=140°C)

1 h constant T=30°C

SiC Microstrip Detector
LPE - SM1

Pulser
V_{DET} = 80 V

τ_{peak} = 12.8 μs

G. Bertuccio, Silicon Carbide Detectors for Ionizing Radiation: history, state of the art and perspectives
CPAD Instrumentation Frontier Workshop 2021, 18 - 22 March 2021, Stony Brook, NY, USA
Strength of SiC for Radiation Detection

High Atom Displacement Energy
(22 / 35 eV)

Experimental Data

Before irradiation

After 23 MGy of 137 Cs

238Pu alpha spectra

46 keV FWHM

62 keV FWHM

Courtesy of F. H. Ruddy, Westinghouse
Strength of SiC for Radiation Detection

High Atom Displacement Energy
(22 / 35 eV)

SiC
GaAs
Si

Experimental Data
Plasma radiation

Asterix – PALS (Prague)
High Power Laser
3 TW / 1 J / 350 ps Laser

SiC detector signal

80 V on 50 Ω (1.6 A)

G. Bertuccio, Silicon Carbide Detectors for Ionizing Radiation: history, state of the art and perspectives
CPAD Instrumentation Frontier Workshop 2021, 18 - 22 March 2021, Stony Brook, NY, USA
Strength of SiC for Radiation Detection

- High Critical Field (2 MV/cm)
- High Saturation Velocity (200 μm/ns)

Experimental Data
Plasma radiation

Asterix – PALS (Prague)
High Power Laser
3 TW / 1 J / 350 ps Laser

SiC detector signal

- Amplitude (V)
- Time (ns)

![Graph showing SiC, GaAs, and Si strengths and parameters](image)

- E_g (eV)
- E_c (MV/cm)
- E_D (x10 eV)
- V_s (10^7 cm/s)

- Strength of SiC for Radiation Detection
- High Saturation Velocity (200 μm/ns)
- High Critical Field (2 MV/cm)

Experimental Data
Plasma radiation

Asterix – PALS (Prague)
High Power Laser
3 TW / 1 J / 350 ps Laser

![Graph showing SiC detector signal](image)

- Amplitude (V)
- Time (ns)

1 ns 50 V
SiC detectors: a wide and successful R&D

Silicon carbide detector for laser-generated plasma radiation
Giuseppe Bertuccioa,b, Donatella Puglisia,b, Lorenzo Torrisic,d, Claudio Lanzierea
aDepartment of Electronics Engineering and Information Science, Politecnico di Milano, Como Campus, Via Anzani 42, 22100 Como, Italy.
bNational Institute of Nuclear Physics, INFN sezione Milano, Via Celoria 16, 20133 Milano, Italy.

High-Resolution Alpha-Particle Spectrometry Using 4H Silicon Carbide Semiconductor Detectors
Frank H. Ruddy, John G. Seidel, Huygian Chen, Abdul R. Dallio, Member, IEEE, and Sei-Hyung Ryu, Member, IEEE

\textbf{What next?}
Large format detectors R&D

\textbf{What is needed now?}
A significant application

SiC detectors: a wide and successful R&D

Simultaneous Measurement of Neutron and Gamma-Ray Radiation Levels from a TRIGA Reactor Core Using Silicon Carbide Semiconductor Detectors
A.R. Dallioa, J.H. Ruddyb, J.G. Seidelc, C. Davisond, T. Finchbaughe and T. Drexelensepeckf
aWestinghouse Science \& Technology Center, 1310 Beulah Road, Pittsburgh, Pennsylvania 15235

What next?
Large format detectors R&D

What is needed now?
A significant application

Additional information:
see presentation at CPAD Solid State Session
Thursday, 18 March 2021
giuseppe.bertuccio@polimi.it