| - .
CCDs for low threshold experiments

-

Juan Estrada - B
CPAD meeting = - o
3/22/2021 . C



Thanks for the instrumentation award, | am happy to accept it on
behalf of a lot o people that worked on all these CCD experiments
over many years.




because we have not seen DM yet,
we are casting a wider net
WIMPS

CCDs
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3-phase

CCDs for dark matter (or CEVNS)
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“Recent” developments by the MSL group at LBNL has allowed the fabrication
for thick CCDs. 675 um is now possible.
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2014 (DAMIC/CONNIE) : 2g sensor, 2e- noise

essentially “borrowed” CCDs from Dark Energy Camera, and looked for
dark matter




CONNIE/DAMIC 2016 sensors

675 um thick CCD
_ Developed by LBNL A

15 x 15 um pixels

4 amplifiers 16 MDi
. X ~ 6g
2e- noise P -,

low background package CCDs for fabricated for DM and neutrinos



Particle identification in a CCD image

electrons and diffusion limited hits.




DAMIC @ SNOLAB
started in 2014




new WIMP result DAMIC: arXiv:2007.15622

Phys. Rev. Lett. 125, 241803 (2020)
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The blue data points are overlaid on the best-fit background
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/fs\kippér-CCD: not a new invention,
\

July 18, 1989

Amazing!
M

To: Distribution
Frow:. J. Janesick, T. Elliott, A. D1n81213n
Subject: SKIPPER IMAGING

The two images below demonstrate the power of the Skipper CCD in
detecting ultra-low signals. The first image was generated by
sampling each pixel once. A read noise of 7.%® electrons is
achieved. The second image, which employs 64 samples/pixel,
achieves a noise floor of slightly less than 1 electron rms. Four
Point images are seen, the smallest at the 3-4 electron level. In
the top picture only the larger point image can be distinguished.
However, in the Skipper image all four can be clearly discerned.
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Figure 6.55 Timing diagram for Skipper operation.

The first Skipper CCD fabricated exhibited a high noise level (7.6 ™), in part
due to a non-LDD amplifier configuration. Improvements in amplifier sensitivity
have reduced the noise to <3 e~ /sample, allowing subelectron performance in
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Figure 6.59 Read noise as a function of number of samples for a 1024 x 1024
Skipper CCD.




Single-electron and single-photon sensitivity with silicon Skipper-CCD (J. Tiffenberg et al)
Physical Review Letters, Volume 119, Issue 13, (2017)

DAMIC “classic CCD” skipper CCD
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... It was not a very active
field, but it took ~30 years for
the optimization
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the “classic” search for wimps looks for nuclear
recoils, but when looking at lower mass particles the
e-recoil channel could be more competitive.
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The first step was operation of a single detector ~2g at MINOS
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Phys. Rev. Lett. 125, 171802 (2020)
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SENSEI 100g

) i . !
l“; ’1 : ' \

Now
underground
@ SNOLAB.
Starting
Installation in a
couple of
weeks.



Oscura : 10-kg skipper-CCD experiment

- Observatory of Skipper CCDs Using Recoiling Atoms
- Science goal : e-recoil low mass direct dark matter search (1 MeV — 1 GeV)

- Technology : skipper-CCD array (sub-electron noise) at underground lab (SNOLAB,
SUREF, other).

- R&D: scale the existing technology towards a 10kg experiment

- Schedule : small project execution plan completed in 2023
R&D: FY19,FY20,FY21
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Oscura R&D priorities

Sensors : transfer to new fab technology.

The foundry we have been using for our thick CCD (DM, dark energy,
neutrinos) experiments is not going to continue with this technology.
Need to find a new way of making the sensors. We also see this an as
opportunity to take advantage of more modern technologies "CMOS-
compatible”

This is where we starting to work with MIT-LL

Electronics: large channel nhumber/cold electronics.

10 kg means a lot of CCD... and a lot of readout channels.

Background

The experiments need to have 0.01 events/kg/day/keV !

U.S. DEPARTMENT OF OffICe Of

| ENERGY Science



mechanical challenges

Oscura is a a 28Gpix CCD array. The sensors

have comic activation budget of 5 days.

Electronics needs to be close to the package,
~4 gram CCD module (SENSEI) but low background. New ideas on packaging,
cryogenics and electronics are needed.

We have developed experiments for ~100g of
active mass with skipper-CCDs. We need to
push for another factor of 100.

New ideas on packaging, cryogenics and
electronics are needed.

U.S. DEPARTMENT OF Office of

ENERGY Science




CEVNS

CCDs at nuclear reactor
are exploring new physics
in the low energy neutrino
sector. CONNIE
experiment.

As for the case of DM,
skipper CCD extend the
reach of these searches.
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VIOLETA Experiment

PHYSICS GOALS PROJECTED SENSITIVITIES SKIPPER-CCD ABOUT VIOLETA COLLABORATION MEMBERS JOIN US!
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a Reactor Neutrino Experiment based on Skipper-CCD technology

CONTACT US

https://www.violetaexperiment.com



Quantum imaging with skipper-CCD
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Darkness satellite to mount CCDs in space for direct dark
matter search (Team-X study 2019 JPL)

Solar panels
(similar to Tempest-D)

Patch Antenna Large amount of extra
Vulcan Wireless volume in 6U form factor

Umbilical available for PSC dispenser ==

Ricor K-508 Cooler ==

Radiator, 705 cm?, (may be
used for electronics or cooler)

ooy

Ricor Cooler Electronics

Radiator, 756 cm?, (may be /

used for electronics or cooler)

Vulcan CSR-SDR-S/S transceiver

Instrument EPS & Batteries

Patch Antenna

Sphinx Card (or Vulcan Wireless

Snapdragon board)
BCT XACT
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smart skipper readout
astronomy applications
Neutrinos and smart skipper
QIS applications

QIS applications

QIS applications

sensors and readout

first demo and dark matter
WIMP search

e-recoll dark matter

CEVNS

future dark matter experiment
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We present constraints on the existence of weakly
interacting massive particles (WIMPs) from an 11 kg
d target exposure of the DAMIC experiment at the
SNOLAB underground laboratory. The observed
energy spectrum and spatial distribution of ionization
events with electron-equivalent energies >200 eVee
in the DAMIC CCDs are consistent with backgrounds
from natural radioactivity.
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FIG. 1. Data cluster in the WIMP search energy region. The
black markers show the pixel values along the row while the
red histogram is the result of the best-fit Gaussian function.
Cluster variables are given in the inset.

Phys. Rev. Lett. 125, 241803 (2020)
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FIG. 2. Projections in F and o, of the best-fit background
model (solid lines) compared to the fast clustered data (mark-
ers). a) The total background model spectrum is shown along
with four separate contributions grouped by background ori-
gin. Shaded energy regions are excluded from the analysis.
b) Comparison of o, distributions in the fit energy region
(red) and at lower energies (blue). The peak at low (high) o,
corresponds to events at the front (back) of the CCDs.



