Options for gain elements and gas mixtures in a high rate EIC Time Projection Chamber

BOB AZMOUN¹, CAITLIN BEATTIE², JOHN W. HARRIS², ALEXANDER KISELEV¹, RICHARD MAJKA³, NIKOLAI SMIRNOV², CRAIG WOODY¹

¹PHYSICS DEPARTMENT, BNL

²PHYSICS DEPARTMENT, YALE UNIV.

³PHYSICS DEPARTMENT, YALE UNIV., DECEASED

Motivation

- > A Time Projection Chamber (TPC) is a good choice for central tracking at EIC
 - Low mass, large-continuous active volume
 - Precision tracking
 - Pattern recognition
 - Momentum reconstruction
 - Particle identification
- Requirements:
 - Operate at and acquire data for collision rates as high as 500 kHz
 - Continuous readout option should be considered (active gating grid is not possible, but perhaps a passive (bi-polar) one is)
 - Operate in magnetic field in the range 1.5 3 T
 - Limited space: r ~ 80 cm, z ~ +/-100cm inside a SC solenoidal magnet.
- Main challenge: Space Charge Distortions of the E-field will be the main degradation factor for tracking and dE/dx performance (due to high interaction rate at ultimate EIC luminosity, possibly high backgrounds, and high demands on precision)
- **Crucial EIC TPC parameters** : ion back flow (IBF), energy resolution (dE/dX), electron and ion drift speed, electron diffusion (in E- and B- fields), gain structure, and stability

EIC TPC Gas Mixture Options

- \blacktriangleright One TPC gas option that satisfies most criteria is a mixture of Ne + CF₄
 - sPHENIX TPC selected this mixture: low diffusion (for high spatial resolution) and high ion mobility (Ar provides greater primary ionization and may be preferable in terms of energy resolution)

Three issues:

- Strong CF₄ electron absorption resonance
- Possible transfer of ion charge: $Ne^+ + CF_4 \rightarrow Ne + CF_3^+ + F$ [1]
- Both components are transparent to UV, and can be a source of scintillation causing photon feedback

Solution:

- Add a "cool" gas component with an energy of ionization less than that for CF₄[2]
- Add methane (CH₄) component
 - permits transfers of positive charge from the Ne⁺ ions to CH₄⁺
 - does not degrade diffusion, or the electron and ion drift velocities
 - known to be an effective quencher to stabilize gain process
 - for safety reasons the level of CH₄ is generally kept at or below 10%

[1] D.J.G. Marque et al, "Experimental ion mobility measurements in Ne-CF4," 2019 JINST 14 P04015.[2] J. Va'vra, "Wire Chamber Gases," SLAC-PUB-5793.

Percentage of CF₄

- Initial R&D question: what percentage of CF₄ used in a Ne + CH₄ (10%) gas mixture?
- GARFIELD simulation results to consider [3]:
 - CF₄ percentages have a small impact on transverse diffusion and electron drift speed
 - Though, ion mobility increases by a factor 2 for gas mixtures with 10% CF_4 compared to 50%
 - Electron absorption probability decreases with increasing CF₄ percentage (ie, better energy resolution at higher %)
 - The magnitude of the electric field should be increased to maintain the same gas gain with increasing CF₄ percentages (ie, lower gain at higher %)
 - Thus, the gas gain (Townsend coefficient) and energy resolution (electron attachment probability) are the main trade-off

GARFIRLD: Ne + CF4(5 – 50%) + CH4(10%), B field = 1.5T ***)

[3] Prakhar Garg, private communication,

http://skipper.physics.sunysb.edu/~prakhar/tpc/HTML_Gases/split.h tml

CPAD2021

Gain Structure Options to Minimize IBF

Layered MPGD amplification stages provide a means to control the flow of charge by tuning the electric field in several drift gaps

Drift Volume

- A 4GEM ion blocking scheme was realized by the ALICE TPC upgrade project using 4 unique GEM foils
- The sPHENIX TPC will utilize a similar concept with some essential modifications
 - Top GEM Gain =1 (~Zero fluctuations, $\Delta E/E$ undamaged)
 - Sacrifice some electron transparency at lower gain stages to improve IBF

Radioactive source(s), X-ray

- A novel hybrid MMG + 2GEM scheme was proposed by the Yale University team as an alternative to the ALICE concept
 - Fully exploits large E_{drift}/E_{induction} field ratio of MMG to strongly suppress IBF
 - Small GEM gain (low IBF): GEMs effectively transfer primary charge and simultaneously act as effective IBF shield

CPAD2021

^{** -} GEM foils are in 90deg rotation position

IBF Comparison w/ ALICE Gas Mixture

- MMG is the primary gas gain element with a maximum field ratio between the amplification and induction gaps, resulting in a MMG IBF value of ~1% or lower
- The voltage on the top GEM assures a continuous drift field in the TPC volume and provides small effective gain to preserve electron statistics for good energy resolution
- The extraction field (between GEMs) can be varied without destroying other parameters (easy tuning)
 - The second GEM transfers electron clusters from the first gain step (a high E-field) to the MMG induction gap (a very low E-field), with effective gain for GEM2 is less than one
- Other possible parameters are different pitches and/or patterns of the GEM holes.
- All critical TPC parameters of the 4GEM setup can be obtained for the MMG + 2 GEMs option, with even lower IBF by a factor 2 – 2.5 and smaller max voltage

Two Gain Options for EIC TPC

- For the MMG + 2GEM option 10 percent of CF₄ provides the best performance in terms of energy resolution and IBF, while for the 4GEM option ~35 40% performs best.
- Best IBF results for 12% E. Res: 0.40% (MMG + 2 GEMs) and 0.60% (4 GEMs)
- Best IBF results for 16% E. Res: 0.18% (MMG + 2 GEMs) and 0.40% (4 GEMs)

Stability Tests with x-ray Source

% (Fe55)

- MMG + 2GEM exposed to high rate of xrays with anode current reaching 10nA/cm²
- Similar probability of MMG sparking that could occur when high momentum particles interact in the mesh material
- Sigma / Mean, Stability test performed at 2 different MMG potentials: 450V and 480V
- Stable operation: 7 hrs of running with no spark!

20 E drift – 0.4 kV/cm, E transfer – 2.0 kV/cm, dV=450V E induction – 0.075 kV/cm 18 Gain: ● - ~2200, ● - ~4000. dV=480V GARFIELD: E-field: 0.4 kV/cm, B-field: 1.5 T, 16 Electron drift velocity: 7.8 cm / μs, Tr. Diffusion: 58 µm / Vcm. 14 12 0.2 0.6 1.2 1.8 0.4 0.8 1.4 1.6

MMG + 2 GEMs, Ne + CF4(10%) + CH4(10%)

Resistive Layer Protection

- In the event of a spark, a resistive protection layer on the r/o reduces the induced voltage drop and dead time
 - 10x10cm² MMG + 4x7.5mm² pad r/o
 - Spark trigger rate ~ 1/20 s
 - Signal from divider connected to MMG mesh
 - Signals recorded on oscilloscope

Results:

- <u>No Protection Layer</u>
 - HV drop = 30V (significant gain drop)
 - 630µs recovery time
- <u>With Resistive Layer: 1MΩ/cm²</u>
 - HV drop ~0.4V (negligible effect)
 - ~600µs recovery time

CPAD2021

Low Mass Readout Options for TPC

- In order to measure the outgoing electron in EIC collisions with high precision momentum and tracking, a dense readout at the TPC endcap (for |η|>1) must be avoided
- Possible solutions
 - A. Si-based readout: TimePix with 55x55µm² pixel (demonstrated with 3GEM or Ingrid gain options by ILC team)
 - Large sampling of primary ionization electrons with excellent dE/dx performance
 - Data flow/volume can potentially be challenging, but for EIC events with relatively few tracks per event, this may not be an issue
 - B. Couple charge from large (~1x10mm²) anode pads of TPC r/o plane to input of high density channels of Si readout
 - Additional CCD element may be needed to facilitate the transfer of charge
 - C. Reposition TPC endcap readout in the electron-going direction to dramatically minimize material thickness for $|\eta| > 1$
 - Split TPC into two halves: one half with cathode near IP, one standard

- Challenges
 - This concept needs to be tested with simulation
 - Rapidity hole near η =0
 - Impact on Physics seems small (Jets, Abs. X-section measurements?)
 - Acceptance of vertex det. obscured
 - Routing of services, cabling

Summary

Investigated crucial parameters for a future high rate TPC at the EIC: ion back flow, energy resolution (dE/dx), electron and ion drift speed, electron diffusion, and stability

Concentrated on two MPGD gain structures: 4GEM and MMG+2GEM

- For the hybrid option, we achieved an IBF below 0.3% and an △E/E < 12% for Fe⁵⁵ x-rays at a gain of ~2000 for several gas mixtures
- Optimal gas mixture ratios were identified for both the 4GEM and hybrid option
- We have demonstrated the stability of operation for the hybrid gain element with the optimal working gas
- We have also showed that for relatively rare spark events, the impact on the performance of the hybrid gain element is negligible

Conclusion: The hybrid amplification stage allows for a TPC design that can operate in a continuous mode, serves as a viable option to limit space charge distortions in high-rate TPCs, and guarantees that dE/dx, ionization cluster space reconstruction resolution, drift parameters and detector stability will not be compromised