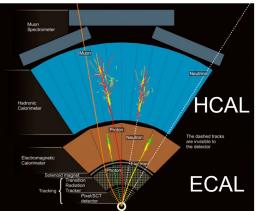
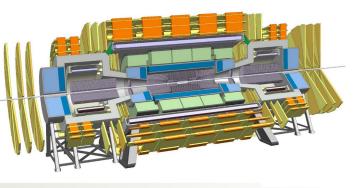
Calorimeter performance studies using Monte Carlo simulations for future collider detectors


S.Chekanov (ANL)

With contributions from: A.Kotwal (U.Duke), S.-S. Yu, (NCU), C.-H. Yeh (NCU), K.-Y. Chen (NCU)

Based on Snowmass21 Lols:

EF/SNOWMASS21-EF0-IF6-007.pdf, IF/SNOWMASS21-IF6-EF9-002.pdf EF/SNOWMASS21-EF8-IF6-008.pdf Contributed paper: JINST 15 (2020) P09021



S.Chekanov (ANL) et al.

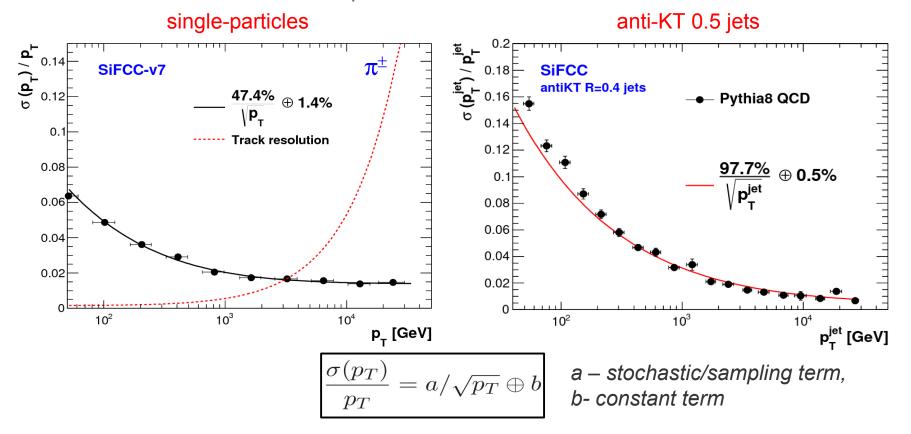
Calorimeter requirements driven by physics at 100 TeV

- Good containment up to pT(jet)~30 TeV: 12 λ, for ECAL+HCAL
 - contributes to jet energy resolution, leakage biases, etc.
- Small constant term for HCAL energy resolution: b < 3%</p>
 - dominates jet resolution for pT>5 TeV
 - important for heavy particles decaying to jets etc.
- Longitudinal segmentation \rightarrow open question
- Good transverse segmentation for resolving boosted particles:
 - HCAL studies presented in this talk
- Precise timing information

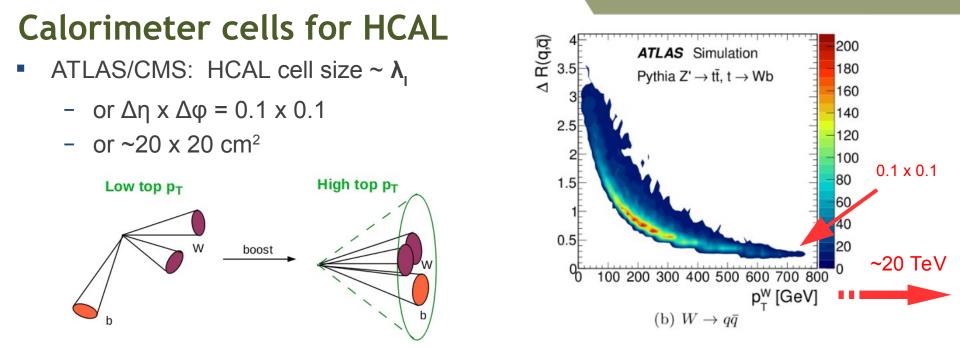
See: The Hadron Collider: "Future Circular Collider Conceptual Design Report", Volume 3. Eur. Phys. J. Spec. Top. (2019) 228, 755

 $\sigma(p_T)$

 $= a/\sqrt{p_T} \oplus b$



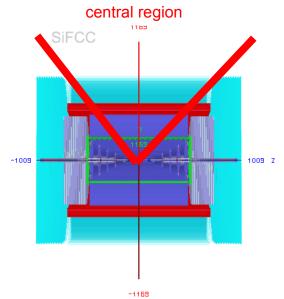
2


Energy measurements at multi-TeV scale

JINST 12 (2017) P06009

 Energy resolution. Geant4 simulations using FCC-hh (ECAL:35 X0, HCAL~ 11.5λ, - see backup)

b < 3% for ~12 λ₁ ECAL+HCAL is achievable using traditional technologies.
What about granularity of cells?

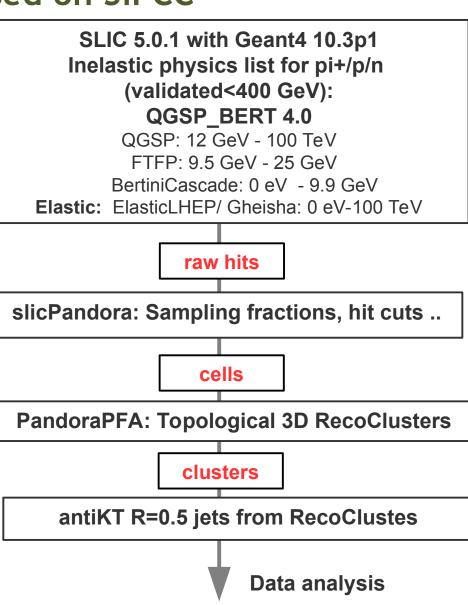


- 100 TeV: Cell sizes should be optimized for substructure of (boosted) jets
- CALICE: Small cell sizes are beneficial for sparse e+e- physics using PFO
- Recent Geant4 study extends this conclusion to ~1 TeV for single particles JINST 12 (2017) P06009 https://arxiv.org/abs/1612.07291

What is most optimal transverse granularity for multi-TeV scale **jets** physics?

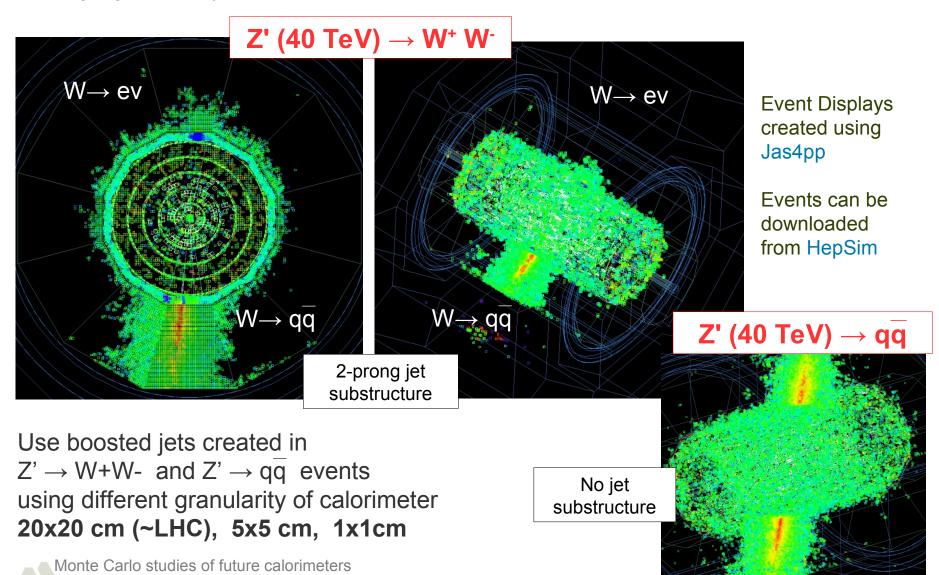
 Requires realistic physics events and Geant4 simulations (+ object reconstruction) with a FCC-hh representative detector geometry

Geant4 simulation setup based on SiFCC

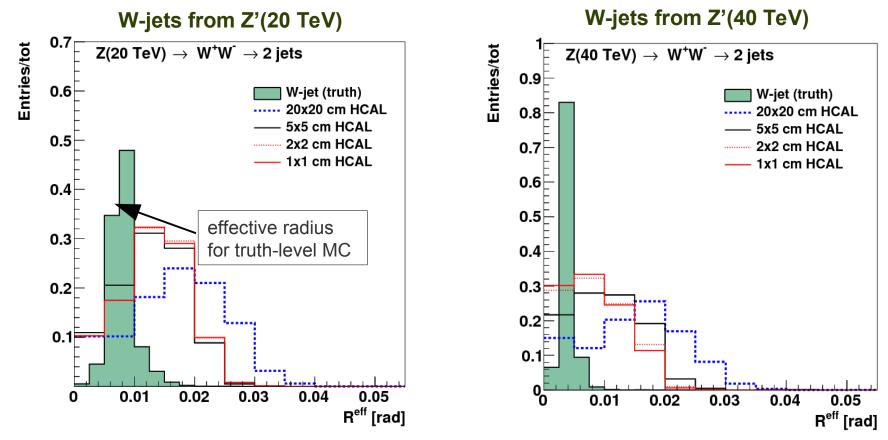


SiFCC9 description:

- Derived from SiD/CLIC "all silicon" concept
- |η|<2.5 optimized for 100 TeV collisions
- Compact (~20% smaller than ATLAS)
- Playground for Geant4 simulations

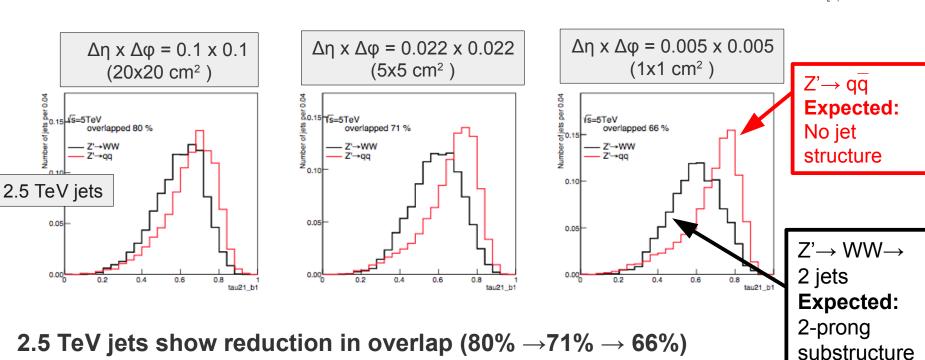

Notes:

- 100 ns cut for hits
- No PFA for this study


20 TeV hadronic jets from Z'

High-granularity HCAL with 1x1 cm cells, 10k hits in ECAL, 46k hits in HCAL

Effective jet radius of antiKT5 jets from clusters


Sum over all distances between energy deposits and jet center, weighted with E(const) / E(jet)

- Jets with pT>10,20 TeV, each from $W \rightarrow q\overline{q}$
- 5x5 cm ($\Delta\eta x \Delta \phi = 0.022 \times 0.022$) shows improvement compared to 20x20 cm ($\Delta\eta x \Delta \phi = 0.1 \times 0.1$)
- Small difference between 2cm and 1cm cell sizes

Studies of N-subjettiness

- Jesse Thaler, Ken Van Tilburg:
 - $T_{21} = T_2/T_1$ used for boosted W tagging
- Use overlap between QCD and W jets as a benchmark for effectiveness of tau21 for boosted W reconstruction
- Use different HCAL granularity from 20x20 cm² to 1x1 cm² (no changes in ECAL)

going from 20x20 cm² to 1x1 cm² for HCAL cells

Monte Carlo studies of future calorimeters

0.08

0.07

0.06)

0.05 0.04

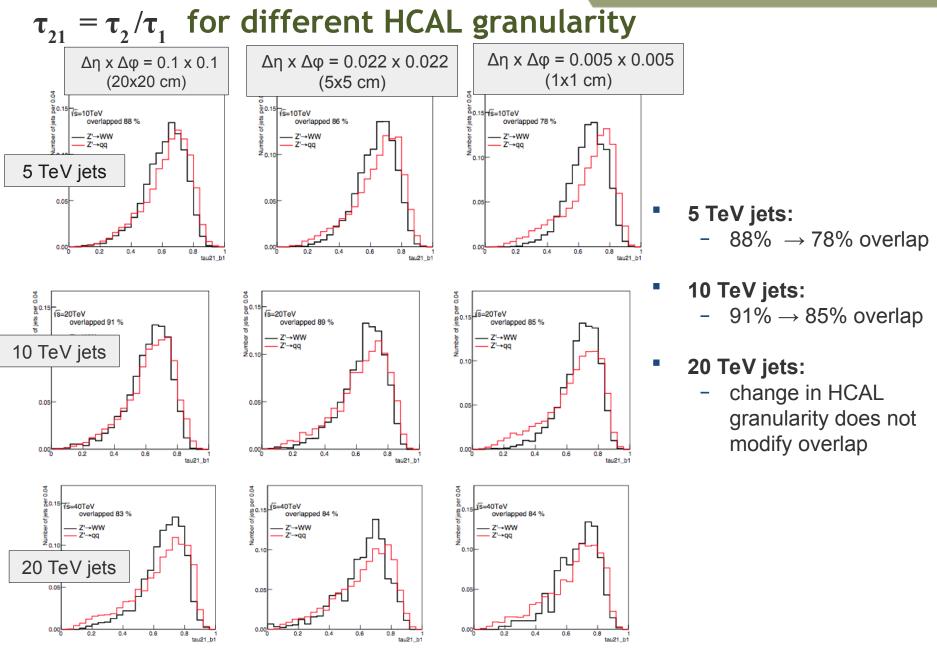
80.0 Helative

0.01

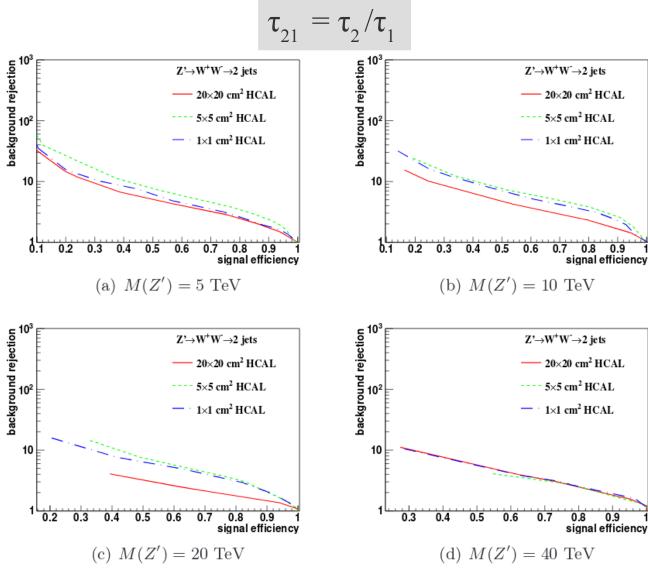
0.2

65 GeV < m, < 95 GeV

0.4 0.6 τ₂/τ₁ of jet


 $(W \rightarrow qq)$

8


W jets

8.0

QCD iets

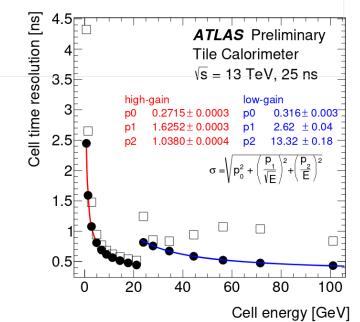
Efficiency vs background rejection for different cell sizes C.-H. Yeh JINST 14(2019) P05008

Significant improvements after reducing cells from 20x20 cm² to 5x5 cm²

1x1 cm² cells show no improvements compared to 5x5 cm²

Summary of jet substructure studies

- Boosted jets studied up to 30 TeV in transverse momentum using Geant4 simulation with realistic energy reconstruction
- Jet substructure benefits from HCAL granularity
- HCAL cell size Δη x Δφ = 0.022 x 0.022 (5x5 cm²) shows significant improvement for physics events compared to Δη x Δφ = 0.1 x 0.1 (~ CMS, ATLAS)
- Smaller than 0.022 x 0.022 cells show minor improvements for >20 TeV jets


From the CPAD report: https://arxiv.org/pdf/1908.00194.pdf

Section: 4.1.5 Critical Needs

- Picosecond time resolution
- Modern image processing technology, both hardware (GPUs) and software (image processing and deep learning)
- Low-cost, high-light-yield, fast and radiation-tolerant .. scintillators
- Advances in Silicon Photomultiplier (SiPM) technology. Improved UV detection, larger dynamic range though smaller pixels, direct coupling to, or integration with readout electronics
- Low-cost radiation-tolerant electro-optical transceivers at ~10 Gbps or more.
- Continued development of GEANT..

~1 ns is baseline for CLIC/FCC calorimeters (technology / price)

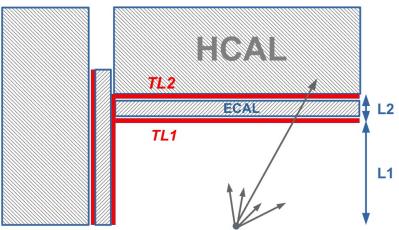
Time resolution for TileCal (ATLAS) is already ~0.4 - 2 ns (jets)

Benefits of timing information for future experiments

All post-LHC experiments (CLIC, EIC, ILC, FCC-ee, FCC-pp ..):

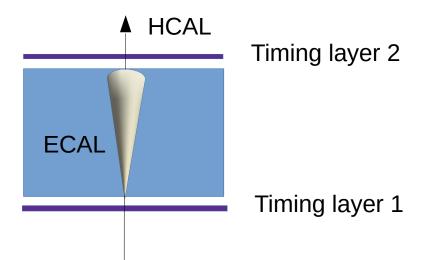
- Particle ID from time-of-flights (TOF)
- Particle flow object reconstruction: Reducing confusion term (mis-matching in energy depositions and particles)
- Identification of BSM long-lived particle for new physics
- Physics objects reconstruction, lepton isolation, b-tagging, etc.

CLIC (e+e-):


- Background rejection (coherent and coherence e+e- production)
- ~500 ps assumed

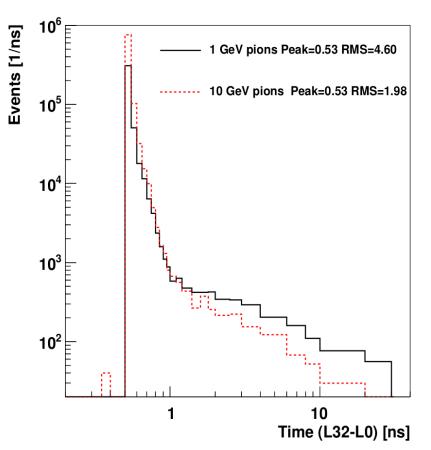
FCC, HE-LHC

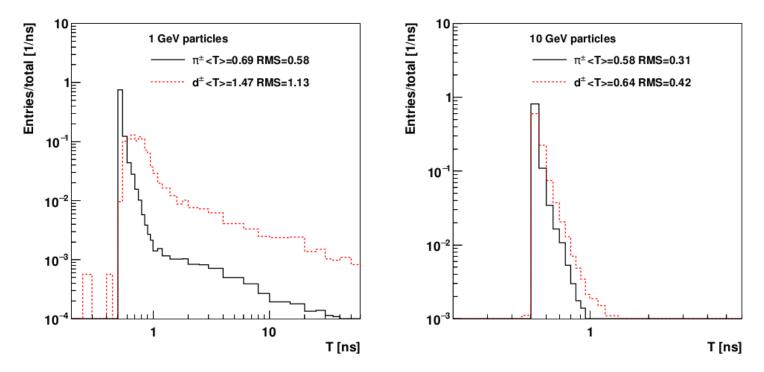
- Pileup rejection \rightarrow significant impact when using ~20 ps


Idea: Use timing layers before and after ECAL

- Directional capability that will allow correlated hits with calorimeter
- Redundancy
- TOF between TL2 and TL1 for heavy longlived particles

Can it work?


- only if EM shower propagates through ECAL with small RMS and time delays
- Need full Geant4 simulations


Full simulation studies using Geant4 (from HepSim)

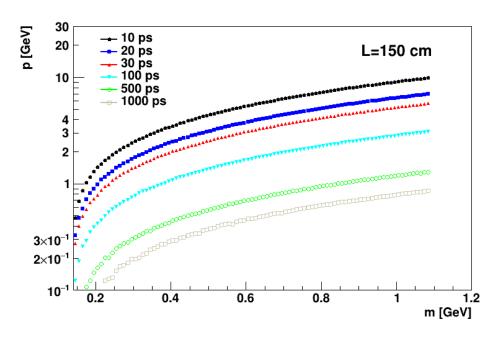
- Use Geant4 and FCC-like geometry with 32 Si/W layers (~20 cm distance)
- Use single pion "guns" with 1 and 10 GeV
- Calculate time difference between TL2 and TL1 for first arriving hits in Si
- On average, time that requires for hits to propagate through ~20 cm of ECAL cells is ~0.6 ns, with RMS < 5 ns
- For standard 1 ns detector TL1 and TL2 signals will be seen as single hit in both layers

TOF for Geant4 hits for pions traveling a distance between TL2 and TL1 (~0.2 m)

TOF for TL2 - TL1 for deuterons (d±)

Deuterons (m=2.04 GeV) for a proof-of-concept test:

- Heavier than pions
- Well understood simulations of interaction with material
- Can be produced in material (and primary interactions)

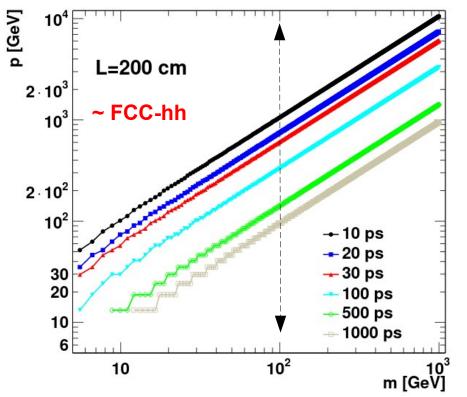

TOF difference between deuterons and pions is ~200-700 ps for p~1 GeV

- Can be detected by a 20 ps detector
- \rightarrow a particle heavier than a d± can also be separated for p > 1 GeV

Single-particle separations

Snowmass21: arXiv:2005.05221

- Assume TOF measurements in the 1st layer of ECAL (TL1)
 - ECAL inner radius R=1.5 m (Example for CLIC_o3_v13)
- 3σ separation of a particle with mass "m" from the pion hypothesis


For ~20 ps detector:

- K-mesons can be separated from pions up to p~3 GeV
- p/n can be separated from pions up to p~7 GeV

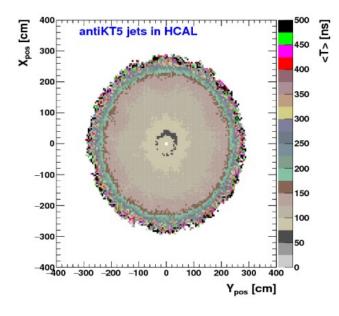
- Particle Flow Reconstruction: Reconstruct momenta of individual particles avoiding double counting, i.e. separate energy deposits from different particles
- Particle ID from TOF can improve particle flow object reconstruction (reducing confusion terms) → Study this at Snowmass21?

Identification of LLP particles

- Identification of heavy long-lived (or quasi-stable) particles
- 3 σ identification requirement

BSM particle with M=100 GeV can be identified up to momentum:

- 700 GeV in |p| for σ_{TOF} =20 ps
- 70 GeV in |p| for σ_{TOF} =1 ns


Can identify massive stable particles in very boosted regime!

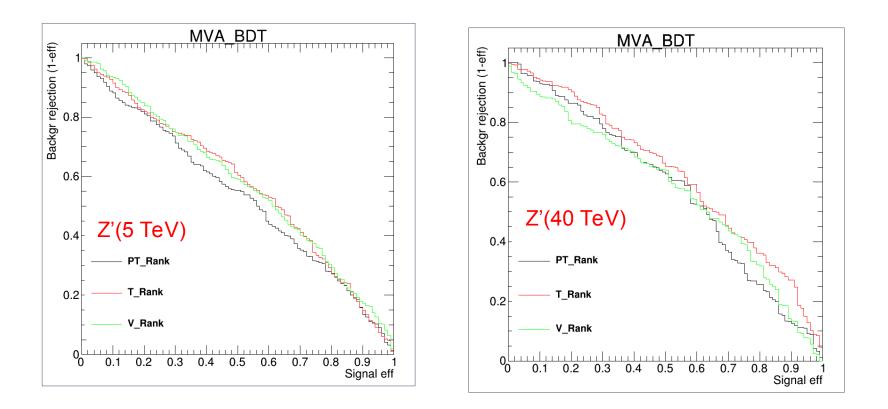
Increase in physics reach by a factor 10 using calorimeters with ~20 ps resolution

Effect of timing information on jets

Snowmass Lol : SNOWMASS21-EF8-IF6-008.pdf See also M.Klimek (arXiv:1911.11235)

- Explore temporal structure of a jet using full Geant4 simulations
 - Jet constituents may have different velocity, particle masses, b-jets
 - Is time in addition to "spatial features" useful for boosted jet tagging?

Time profile of Geant4 hits for 12 TeV antiKT5 jets from $q(\overline{q})$ using FFC-like geometry from HepSim Signal: $Z' \rightarrow W+W-$ Background: $Z' \rightarrow q\overline{q}$


Calculate "background rejections" vs "signal efficiency" using 5 variables for BDT

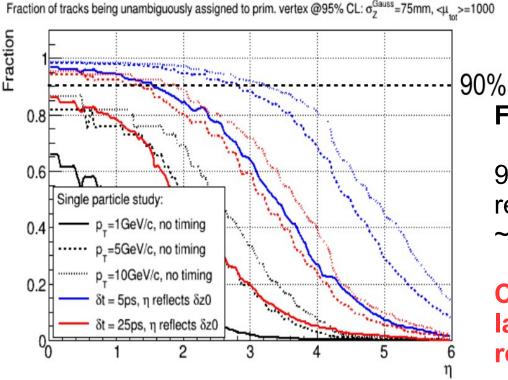
Variables ΔR_i (i=1,..5) defined as distance between the highest P_T particle in a jet and the five trailing particles ranked in

- Momentum (P):
- Time (T):
- Velocity (V=|P| / E)

Effect of timing information on jets

Signal: $Z' \rightarrow W+W-$ Background: $Z' \rightarrow q\overline{q}$

- No significant difference between different variables used for BDT
- Timing slightly improves selection of Z'(40 TeV) but the origin of this small improvement needs to be understood


Summary of timing layers studies

- Timing layers with tens of picosecond capabilities complements calorimeters with the standard ~0.5 1 ns readout
- Proof of principle for 2 timing layer design (before and after ECAL)
 - in combination with highly-granular ECAL/HCAL can lead to cost optimized calorimeter designs
- Timing layers can be used for:
 - Pile-up mitigation
 - Particle identification (baryons vs pions vs kaons etc.)
 - Reducing confusion terms in PFA \rightarrow improvements for jets etc.
 - b-tagging, lepton-isolation
 - BSM long-lived particles \rightarrow See concrete example in backup
- Timing for boosted jets will further be studied during Snowmass21

Backup

pp collisions at FCC-hh

Fraction of tracks being assigned to primary vertex for different timing cuts

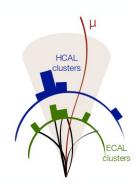
HL-LHC scenario shows with dashed lines

For baseline FCC-hh scenario:

90% assigned tracks in the central region can be achieved with ~5 ps timing cut

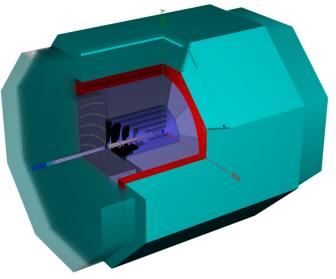
Conclusion: Several timing layers necessary with resolution below 25 ps

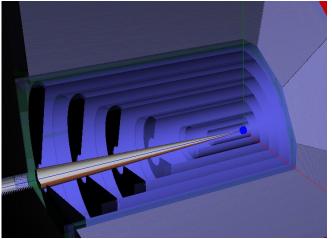
Impacts low-to-medium pT jets

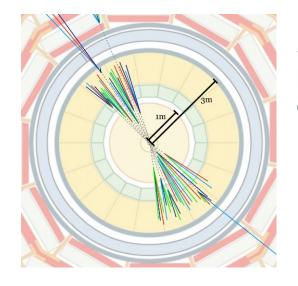

Z.Drazal (FCC meeting)

https://indico.cern.ch/event/650511/contributions/2651562/attachments/1488103/2312560/Effe ctivePU_ZDrasal.pdf

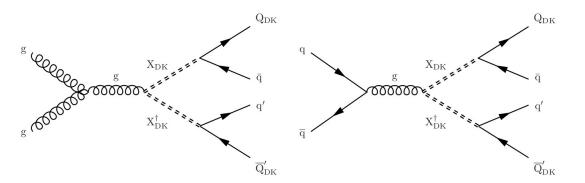
Characteristics of SiFCC

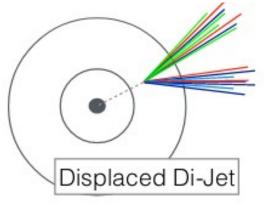

http://atlaswww.hep.anl.gov/hepsim/detectorinfo.php?id=sifcch7

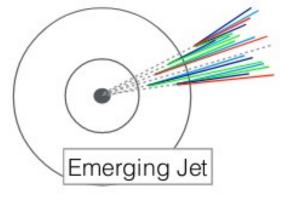

- 5 T solenoid outside HCAL
- Si pixel and outer trackers (5 + 5 layers):
 - 20 µm pixel (inner), 50 µm (outer)
- ECAL (Si/W): 2x2 cm. 32 layers, ~35 X0
- HCAL (Scint. / Fe) ~ FCC-hh reference
 - 5x5 cm cells: $\Delta \eta \propto \Delta \phi = 0.022 \times 0.022$ x4 smaller than for CMS & ATLAS
 - 64 longitudinal layers \rightarrow 11.3 $\lambda_{_{I}}$
 - 3.1% sampling fraction
- > 150 M non-projective cells (ECAL+HCAL)


JINST 12 (2017) P06009 https://arxiv.org/abs/1612.07291

WWW link to explore this detector


Emerging jets




CMS: arXiv:1810.10069v2

Y. Bai and P. Schwaller, Phys. Rev. D 89 (2014) 063522, P. Schwaller, D. Stolarski, and A. Weiler, JHEP 05 (2015) 59,

Searches for a new heavy particle that acts as a mediator between a dark sector and SM, and that decays to a light quark and a new fermion called a dark quark.

Fight background by vetoing prompt and secondary tracks. Alternatively: Use timing information for jets

Track acceptance vs calorimeter with timing layers

Acceptance as a function of decay length (mm) and mass of the mediator that decay to dark pions

c τ [cm] **CMS** Simulation $(m_{\pi_{DK}} = 5 \text{ GeV})$ (13 TeV) 120-0.4 ரோ_n [mm] 110-100-0.35 90-0.3 0.25 60-0.2 🗸 50-0.15 40-30-0.1 20-0.05 10-0-1,000 1,500 2,000 2,500 $m_{X_{DK}}$ [GeV] Mx [GeV]

Tracks-only acceptance

Calorimeters with Timing Layer assuming 20 ps resolution R=2m

Timing layer on front of ECAL leads to large acceptance for small Mx

Snowmass21 contributed paper: arXiv:2005.05221

-0.38

0.36

-0.34

0.32

0.30

0.28

-0.26

0.24

0.22

-0.20

-0.18

-0.16

0.14

-0.12

0.10

0.08

-0.06

-0.04

-0.02