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RADiCAL - EM Calorimetry

Desirable Features

• Very Compact Dimensions

• Excellent energy resolution

• High efficiency 

• Fast response (timing 
capability)

• Triggerability

• Good shower position

Challenges

• Radiation Environment
• Ionization dose
• Proton fluence
• Neutron fluence

• Transverse Uniformity

• Longitudinal Uniformity

• Event pileup
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Objectives
Energy Resolution: sE/E = 10%/ÖE Å 0.3/E Å 0.7% up to |h| < 4.
Fast response. 
Good performance under FCC-hh operating conditions    
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RADiCAL Approach

• Ultracompact, Radiation Hard 
Sampling Calorimetry

• Use of dense materials
• Small Molière Radius
• Depth > 25 Xo but < 1 l

• Optical techniques for fast signal 
collection
• HIgh efficiency scintillators 

and wavelength Shifters
• Optical paths as short as 

possible



RADiCAL - Ultracompact Sampling EM Calorimetry Modules
for initial beam tests of the technique.
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R&D Components of RADiCAL
• Scintillators
• Crystals
• Ceramics
• Plastics, glasses

• Wavelength Shifters 
• Fluorescent dyes
• Liquids 
• Ceramics 
• Quantum Dots

• Optical Transmission Elements
• Fiber optics
• Capillaries

• Photosensors
• SiPM
• GaInP

• Structures
• Testing
• Irradiations
• Beams
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LYSO:Ce and LuAG:Ce Comparison under Irradiation 
by protons and neutrons
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RIAC values as a function of proton fluence for 
LYSO/LFS crystals and LuAG ceramics irradiated 
at CERN 

RIAC values as a function of 1 MeV equivalent 
neutron fluence for LYSO crystals and LuAG
ceramics irradiated at LANSCE 



Scintillation materials under investigation include:

1. Inorganic scintillation crystals and ceramics are the preferred 
approach because of material density and light efficiency.
• LYSO, LuAG, GGAG, GYAG, GLuAG…
• Ce 3+, Pr 3+ doping and also Ca co-doping.
• Rad hardness of LYSO studied up to 300Mrad ionization dose and neutrons up 

to 9 x 1015 neq/cm2 and protons up to 8 x 1015 p/cm2.
• Currently LYSO+SiPM are the key elements of the CMS BTL.

2. Some novel scintillating ceramics such as LuAG:Ce have greater 
radiation hardness than LYSO.
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New vision of the Fiberoptic Profile
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Transmission Studies in capillaries as a 
function of successive 50Mrad 60Co 
gamma irradiation doses.  ND Rad Lab. 



Wavelength shifters and optical transmission elements 
under investigation…
• If photosensors cannot be positioned proximately to the scintillator, 

efficient and fast waveshifting of the scintillation light and light transfer to 
remotely placed photosensors are needed.
• WLS materials specialized to different scintillators

• To shift 420-425nm to 490-500nm, WLS dyes DSB1 and DSF1
• To shift 350-380nm to 530-560nm, WLS dyes based on new hydroxyflavones
• Quantum Dot/siloxane and glass composites to shift longer wavelengths

• Optical transmission elements
• Capillaries – sealed and liquid WLS filled quartz structures

• Studied to 250Mrad ionization dose and up to 1015 p/cm2.
• Capillaries filled with inorganic, solid WLS materials
• Quartz fibers
• Novel optical transmission structures 
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Photosensor Development - SiPM
• Pixelated Geiger-mode devices with high photo efficiency across a broad spectral range.
• Particularly effective for longer wavelength light detection.
• Already impactful for light detection of: 

• CMS BTL - LYSO emission (420nm)
• CMS HCAL - Y11 emission (500nm)
• In our R&D DSB1 emission (490nm), LuAG:Ce emission (520nm) and hydroxyflavone emissions (530-560nm) 

• Intention is to exploit and further the development of localized cooling  (TEC) of the SiPM to 
reduce noise and extend performance lifetime.

• Continue the development of small pixel devices (5-7µm) to enhance efficiency and  benefit from 
fast response time.  
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Pulse detected from a FBK 
SiPM with 5µm pixels.

Thermionic Cooling of HPK SiPM
Modeled scenario of operation up to 4000fb-1
Blue – (-35c operation, no annealing)
Red – (-45c operation, annealing at 40c)

[FBK SiPM



Photosensor Development – Large Band Gap Devices
• Larger Band-gap Technologies

• Hold promise for operation in very high radiation environments, but it is still rather early days in 
this R&D in spite of several device versions produced.

• GaInP pixelated devices have been fabricated.
• Individual photon counting seen, similar to SiPM.
• Device optimization needed to reduce surface currents seen in the latest version.

• Challenge here is the lack (currently) of a broad commercial market to help drive development.   
Seeking interested industrial partnerships.
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GaInP Photospectrum showing individual 
photopeaks. Left most (0) is the pedestal.   
Illumination at l = 405nm. 

IV curves for GaInP photosensors under 
illumination and dark field (blue).

Photo of a 4x4 mm2 GaInP
Photosensor consisting of 10 
arrays of 0.5 x 1.5mm2 size and 
containing 25 µm pixels



Test of a 4x4 array of W/LYSO:Ce with 
DSB1 WLS Capillaries
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Array tested at CERN H4 with both WLS 
capillaries and  Y11 WLS fibers.

Capillaries with the ruby core blocking
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Energy resolution vs  
electron beam energy
CERN H4.

Measured 4x4 energy 
compared to the beam 
energy for  100 GeV    
electrons. CERN H4
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LYSO/W module, single channel time resolution with SiPM
readout.   Waveshifter readout was either DSB1 WLS dye in a 
multiclad optical fiber (dots) or DSB1 WLS in a liquid-filled 
capillary (squares).  Fermilab Test Beam, A. Bornheim et al.

Preliminary Study of Timing Measurement using 
W/Ce and DSB1 WLS Fibers and Capillaries

Conclusion and not a surprise):
the more light you can collect the better 

the timing resolution.

Motivates: Capillary use with clear ends 
rather than ruby quartz ends and read 
out from both downstream and 
upstream ends of the capillaries.



We are developing:
1. Positioning of WLS filaments at 

Shower Max for timing studies.
2. Incorporation of dual readout for 

both scintillation and Cerenkov 
measurement – including for timing 
with quartz rods and the WLS 
capillary structures which are 
predominantly quartz material.

Quartz Rod – Runs the length 
of the Shashlik Module to 
Collect and transmit Cerenkov
Light

Filter to remove
l > 400 nm

UV Optimized SiPM or
Other photosensor.
Very High QE and fast
response.

New approach to timing measurement with RADiCAL
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GEANT4 simulation of the time resolution
expected from Shower Max, using LYSO 
and DSB1 filament.  Electrons of 50 GeV

Shower Max Timing with RADICAL
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Time resolution vs detected light yield at 
Shower Max

Profile of the energy at Shower Max
In a LYSO/W Module with WLS filament
at the Shower Max location



New Vision of Shower Profile Measurement with RADiCAL
Energy Sampling vs Depth to make a shower profile measurement.
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Summary
• RADiCAL R&D to develop highly efficient, ultra-compact and rad hard EM calorimetry elements.

Development and testing of modular elements that can provide:
1. Energy measurement.

2. Shower Max timing measurement.

3. Shower Depth measurements for shower profile measurement.

4. Incorporation of dual readout for both scintillation and Cerenkov measurement – including for timing

• Potential applications in other areas:  
• Hadronic calorimetry
• Forward calorimetry
• Scintillation/WLS detection over compact and larger areas
• Timing detectors

RADiCAL at CPAD2021 18.Mar.21 19

Work Supported by in part by:  
Department of Energy:  DE-SC0017810.003 
National Science Foundation: NSF-PHY-1914059
University of Notre Dame: Resilience and Recovery Grant Program


