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HL-LHC dataset offers the opportunity to measure each
accessible coupling to O(1%)






CMS Experment at LHC, CERN

Data recorded: Thu Apr 5 05:47:37 2012 CF
rRun/eEvent: 180401 / 12545076

“umi seclion: 75

Orbit/Crossing: 19495845 / 1347
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Real event from large pileup run:
occupancy approaches 100% already in the existing
endcap calorimeters!




Dose, 3000 fb™’
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Extreme radiation field presents formidable (yet sizable)
challenges.
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Response degradation in HCAL Endcap
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Signal from existing ECAL, HCAL in endcap region
will be gone after HL-LHC dose;
replacement required.



PF detectors for ILC
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Figure 9: QQ cvents reconstructed with Arbor. Above plots corresponding to qq event at Z threshold, below
shows that at center of mass energy of 200 GeV

PF detectors for future colliders show great promise;
can a similar design work at the HL-LHC?
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Fine segmentation
(transverse and longitudinal)
key to mitigating rad damage

and for particle flow.
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Silicon detectors can survive
the radiation with acceptable
noise levels; maintain MIP
calibration.
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CMS p-p collisions at 7 TeV per beam
1 MeV-neutron equivalent fluence in Silicon at 3000 fb b
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47* layers
6M Si channels on 8” wafers
240k SiPM-on-tile channels

-30C operating T — limit noise
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Minimization of air gaps through careful choice of board
layout and connections = maximize energy resolution
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Massive challenge to fit into available space

while maintaining build-ability.
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ASIC engineering, always a challenge, growing more difficult
due to the expense of the technology involved. Special challenges
at the moment due to COVID and geopolitics...
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A collaborative approach using as many chips and IP as possible from LHC-
wide (I[pGBT) or CMS-wide (RAFAEL, ALDO) efforts helps to make the job
easier. 15



off-detector off-detector
(trigger) (DAQ)
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We have also been pushed to a more modular approach in many places —
splitting functionality to avoid monolithic chips or boards.



FEA model of
CE-H absorber

harry.perkins@cern.ch
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Machined 66 mm plate
from 75 mm initial thickness

Challenging to develop robust & machinable absorbers, cooling planes and support
structures with the necessary precision. 17
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Active detector elements get most of the glory, but powering and
cooling of so many layers (in a space already constrained by the
existing detector) requires a lot of ingenuity. 18



Physical mockups play an important role in connecting CAD

and simulations to reality. 10



spring loaded guard ring
probe card PCB pins contact
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For th| scalz of project (6M Si channels!), resources needed
for QC of all components become critical. 20
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~30 tile variants to be machined
at 50 ym precision
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Where possible, shift QC to QA. Close collaboration with vendors is of course
essential. Tough decisions to be made e.g. if sampling is enough.
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Automatic tile wrapping installation
for multiple tile sizes

High standards for mechanical tolerances and physics performance in each
module strongly favor the precision and repeatability of automated assembly.
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Cassette assembly particularly
demanding.

Parts from many institutes and
countries need to be combined
and tested in a rigorous and
efficient way. A multi-year effort.
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Test beam system:
more channels than
existing CMS endcap!

DCS (environment
controi)

Silicon readout
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HGCAL beam tests and test stands have a complexity comparable to whole
experiments of a previous age. Close collaboration with CALICE bears fruit.
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Summary

CALICE-inspired HGCAL effort will provide valuable experience to the
field of constructing a PF-inspired calorimeter.

HGCAL project is moving towards production through an extensive
series of prototypes and test setups.

Extensive work on managing trade-offs and challenges, including:
- Mechanical design.
- Active sensor elements (including an important QC program).
- Readout electronics and ASICs.

Lots of work ahead to complete the construction.

The HGCAL experience should increase our confidence that other

calorimeters of this basic type can be successfully constructed at
future experiments.
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