

Thin A-Se films for **Novel Scintillation** Light Detectors

Elena Gramellini for Q-Pix elenag@fnal.gov, Lederman Fellow, FNAL CPAD 2021

Huge thanks to: Michael Febbraro, ORNL Shiva Abbaszadeh, UCSD Jonathan Asaadi, Austin McDonald, Michael Rooks, UTA

Pixel TPCs

Pixel TPCs are at the forefront of noble element detector R&D even for kiloton scale neutrino detectors (see Q-Pix talks by Austin McDonald and Gang Liu, LArPix by Booke Russell)

They offer a number of competitive advantages wrt traditional wire readouts

The readout space coincides w/ the physical projected space:

- native 3D reconstruction w/ same spatial resolution
- → abated ambiguities (mm vs m projections)

Light collection system: where to?

In traditional wire readouts, a rather coarse light collection system is mounted behind the wires of the anode plane:

→ VUV light can reach the light collection system

Light collection system: where to?

In traditional wire readouts, a rather coarse light collection system is mounted behind the wires of the anode plane:

 VUV light can reach the light collection system

Ar scintillation light λ = 128 nm

Light collection system: where to?

In traditional wire readouts, a rather coarse light collection system is mounted behind the wires of the anode plane:

 VUV light can reach the light collection system

Pixels are embedded in PCB: **opaque boards** to the VUV light! Different placements of traditional light detectors needs demonstrated and would likely result in a coarse light sampling

Ar scintillation light λ = 128 nm

Charge & Light in Nobles? DUNE LIVES HERE!

At E = 500 V/cm (typical LArTPC field) ¹/₂ of half of energy released by charged particles in LAr goes in scintillation light

→ Light holds ½ of the information
 Boost detection capabilities especially at low E with light and charge combination.

LArIAT arXiv:1909.07920

Phys. Rev. B, vol. 20, no. 8, p. 3486, 1979 150 Xe units) 2 and L (arbitrary 50 Xe 0 2 10 12 Field Strength (kV/cm) EXO-200 arXiv:1908.04128

Turning flaws into strengths

A pixel plane sensitive to UV photons and ionization charge SIMULTANEOUSLY would be a major breakthrough

Multiple modality pixels: a pixel capable to detect both UV light and femtocoulomb charge

- → The effective instrumented area becomes **enormous**: 100% anode surface
- → Light-Charge w/ same readout: extremely granular light collection
- → Light-Charge matching is **straightforward**
- → Even in case of low QE efficiency*, huge gain from photocathode coverage

 * Note: The idea under development has the potential for good UV photon efficiency

Wide surface high granularity light detector: interesting stand alone applicability!

High granularity detectors: light imaging?

Charge simulation on neutrino interaction

High granularity detectors: light imaging?

Amorphous Selenium Coatings

Multiple modality pixel: develop pixel coatings with photo-conducting material.

First material:

Amorphous Selenium

- → Commonly used in
 - X-Ray digital radiography devices
- → Never used in cold: LAr ~ 87k!
 (Big "make it or break it" challenge)

When VUV γ strikes the A-Se, the γ is absorbed and a e-h pair is created with an extremely high probability if the A-Se layer is thick enough.

Q-Pix Readout

<u>The literature</u> on amorphous selenium reports an attenuation coefficient $\alpha \sim 130 \ \mu m^{-1}$ for photons at 128 nm, resulting in a **QE than 99% for thin coatings (> 1 \ \mu m)**

1 $\gamma \leftrightarrow$ resulting on avg in ~ 1.3 e-h pairs: single photon sensitivity not excluded.

At the theoretical break down voltage (90 V/ μ m) the gain factor is ~ 1.5 10³ Electron yield for 2+ γ is compatible w/ Q-Pix readout [1800-6000 e]

<u>The literature</u> on amorphous selenium reports an attenuation coefficient $\alpha \sim 130 \ \mu m^{-1}$ for photons at 128 nm, resulting in a QE than 99% for thin coatings (> 1 μm)

1 $\gamma \leftrightarrow$ resulting on avg in ~ 1.3 e-h pairs: single photon sensitivity not excluded.

At the theoretical break down voltage ($90 V/\mu m$) the gain factor is ~ 1.5 10^3 Electron yield for 2+ γ is compatible w/ Q-Pix readout [1800-6000 e]

100

80

The literature on amorphous selenium reports an attenuation coefficient $\alpha \sim 130 \ \mu m^{-1}$ for photons at 128 nm,

Mobility of carriers might drop at low T

Let's prototype and test! 100 The literature on amorphous selenium reports an attenuation coefficient 80 $\alpha \sim 130 \ \mu m^{-1}$ for photons at 128 nm, Mobility of carriers might drop at low T COEFFICIENT 10⁰ 0.02 0.04 0.06 0.08 0.10 Depth (L) micrometers 10-1 ABSORPTION Effective hole mobility (cm²/Vs) 60 Electron-hole pair creation energy, W_{\pm} [eV] X-ray beam energy: 39.9 ke 10⁻² 50 59.5 ke\ 40 10⁻³¹ 40.5 ke 30 183 10-4 20 166 1x10 10 0 20 40 60 80 100 120 Electric field (V/µm) 0.02 0.04 0.06 0.08 0.1 0

Inverse electric field, 1/F [V⁻¹µm]

Fig. 6. The spectral dependence of the absorption coefficient, α , 14 of amorphous selenium.

9 10 11 12

E(eV)

128 nm

photon

→ 9.7 eV

13 14 15

First prototype & tests

A-Se deposited through thermal evaporation on commercial printed circuit board. First prototype: 200 μ m spacing. UTA test: vacuum 20mtorr, different voltage points, source Xe light. **We saw signal!** Max E ~ 5V/ μ m: far from avalanche regime.

Make it or break it: cryo!

BSE2 02-Nov-20

Fast or turbulent cryo cycle can damage the film. After slow (40 min) manual immersion, no damage visible by eye... so we SEM scanned it.

Make it or break it: cryo!

Fast or turbulent cryo cycle can damage the film. After slow (40 min) manual immersion, no damage visible by eye... so we SEM scanned it. Some differences revealed: need for cooling procedure & quality standards.

Make it or break it: cryo!

Fast or turbulent cryo cycle can damage the film. After slow (40 min) manual immersion, no damage visible by eye... so we SEM scanned it. Some differences revealed: need for cooling procedure & quality standards.

Make it or break it crvol

Focus for the second round of tests: Cryo Temperatures for noble liquids (~87k)

Improved prototype: 127 μm spacing
Reduced spacing the easiest way to increase
E field in this simple design.

Fu

klm

ORNL Setup

Vacuum: ~1.5 10⁻⁵ torr Cold head: Janis ST-100, can be driven @ 50mK res Temperature: Range Explored [78k - 297k] Source: Hamamatsu Xe flash lamp: wide spectral range not ideal, but sufficient for temperature tests.

ORNL Setup

Simple capacitive **ReadOut**. DC/DC converter driven up to 500 V. Low noise charge sensitive preamp.

Insert cookie coated board HERE!

Does it work at room temp?

Does it work in cold!?!

YES!! Very encouraging!! First UV-rich photon detection in cold (down to 78k) with A-Se!

Does the signal come from the ASe?

Same bias applied to a "bare" board (No ASe), and to a board coated with a 1.6 μm thick film.

The integrated signal increases as a function of temperature (as expected) for the coated board. No signal for the bare board.

Going forward: next "break it" questions

Our measurement proves that the response at cryo and room temp are not vastly dissimilar: **first observation at temperatures needed for noble liquids TPCs.**

- Can we see 128-178 nm light with this simple device?
 (Innovative Ar light source under development)
- Can we reach the A-Se avalanche regime, needed for single PE sensitivity?
 (Even smaller pitches, different substrates, dopants!)
- → Does the A-Se kill the noble element purity? An issue for charge...

Going forward: next "break it" questions

Our measurement proves that the response at cryo and room temp are not vastly dissimilar: **first observation at temperatures needed for poble liquids TPCs**

Widening our network of experts to weed out quickly bad ideas: working on sisters setups at UTA, ORNL & FNAL and

in close contact with condensed matter theorists, radiology and medical application experts... **the best is yet to come, stay tuned!**

→ Does the A-Se kill the noble element purity? An issue for charge...

Does the signal come from the ASe?

Voltage scan.

The sign of the bias applied determines the types of carriers: Negative voltage ↔ Holes Positive voltage ↔ Electrons

Difference in signal strength when reversing bias is consistent with charge of carrier type in the ASe, and observation on first prototype.

