### BREAD: Broadband Reflector Experiment for Axion Detection

Andrew Sonnenschein Fermilab CPAD Workshop March 19, 2021



## High Mass Axion Searches

- Resonant cavity haloscope works in a relatively narrow axion mass range, ~0.2-20  $\mu\text{eV}.$
- Open linear resonators with dielectric disks (MADMA) ORPHEUS) may be sensitive up to  $\sim$ 100  $\mu$ eV.
- What techniques will work at higher mass?





#### Axion Induced Radiation from A Magnetized Metal Slab

- Axions interact with a static magnetic field producing an oscillating parallel electric field in free space
- A conducting surface in this field emits a plane wave perpendicular to surface.
- Radiated power is low:

$$P_{signal} = 8.27 \cdot 10^{-26} W \cdot \left(\frac{A}{10 \ m^2}\right) \left(\frac{B_{\parallel}}{10 \ \text{Tesla}}\right)^2 \left(\frac{\rho_{DM}}{0.3 \ GeV/cm^3}\right) \left(\frac{g_{a\gamma\gamma}}{3.92 \cdot 10^{-16} \ GeV^{-1}}\right)^2 \left(\frac{1 \ \mu eV}{m_a}\right)^2$$

• But no detector tuning is required!





"Dish antenna" (Horns et al.)

## Magnetic Field Configuration

- Need to maximize component of magnetic field parallel to radiating surface **B**<sub>11</sub>
- Spherical dish geometry not a good match to conventional magnet types.

#### <u>Spherical dish radiator from Horns *et al.*</u> <u>concept paper:</u>



Horns, Jaeckel, Lindner, Lobanov, Redondo & Ringwald, 2012

## BRASS experiment: Planar array of permanent magnets



Le Hoang Nguyen, Patras 2019 http://wwwiexp.desy.de/groups/astroparticle/brass/brassweb.htm

## Large Solenoids

• How to use large volume solenoids to detect axions?

| B <sub>0</sub> <sup>2</sup> V<br>(T <sup>2</sup> m <sup>3</sup> ) | Magnet        | Application/<br>Technology   | Location  | Field<br>(T) | Bore<br>(m) | Len<br>(m) | Energy<br>(MJ) | Cost<br>(\$M)    |
|-------------------------------------------------------------------|---------------|------------------------------|-----------|--------------|-------------|------------|----------------|------------------|
| 12000                                                             | ITER CS       | Fusion/Sn CICC               | Cadarache | 13           | 2.6         | 13         | 6400           | >500             |
| 5300                                                              | CMS           | Detector/Ti SRC              | CERN      | 3.8          | 6           | 13         | 2660           | >4581            |
| 650                                                               | Tore<br>Supra | Fusion/Ti Mono<br>Ventilated | Cadarache | 9            | 1.8         | 3          | 600            |                  |
| 430                                                               | <i>Iseult</i> | MRI/Ti SRC                   | CEA       | 11.75        | 1           | 4          | 338            |                  |
| 320                                                               | ITER<br>CSMC  | Fusion/Sn CICC               | JAEA      | 13           | 1.1         | 2          | 640            | >50 <sup>2</sup> |
| 290                                                               | 60 T out      | HF/HTS CICC                  | MagLab    | 42           | 0.4         | 1.5        | 1100           |                  |
| 250                                                               | Magnex        | MRI/Mono                     | Minnesota | <u>10.5</u>  | 0.88        | 3          | 286            | 7.8              |
| 190                                                               | Magnex        | MRI/Mono                     | Juelich   | 9.4          | 0.9         | 3          | 190            |                  |
| 70                                                                | 45 T out      | HF/Nb <sub>3</sub> Sn CICC   | MagLab    | 14           | 0.7         | 1          | 100            | 14               |
| 12                                                                | ADMX          | Axion/NbTi<br>mono           | U Wash    | 7            | 0.5         | 1.1        | 14             | 0.4              |
| 5                                                                 | 900 MHz       | NMR/Sn mono                  | MagLab    | 21.1         | 0.11        | 0.6        | 40             | 15               |

Compilation by Mark Bird, NHMFL



#### "Coaxial Dish": Optical Concentrator for Solenoid Magnets



• Rays emitted from cylindrical inner surface of solenoid are focused to a point after two reflections.

## **Axion Source Strength**

- Surface area for axion to photon conversion is inner magnet bore with area  $\sqrt{2}\pi D^2 > 10 \text{ m}^2$  for the largest superconducting solenoids.
- Signal power ~  $10^{-25}$  W for KSVZ model and ~  $10^{-26}$  W for DFSZ.
- At least a few photons per day over most of the axion mass range of interest.





#### Design Legacy- 19<sup>th</sup> Century Lighthouse Mirrors



Bordier-Marcet's 'Fanal Sidereal Reflector. (1809)



Fanal Sidereal Lantern. (1811)

In 1809, Bordier-Marcet invented the 'Fanal Sidereal' reflector where two parabolic reflecting surfaces were placed one above the other. Each of the reflecting surfaces had a central hole where the lamp flame was placed. The Fanal Sidereal reflector was first used in the harbor lighthouse in Honfleur, France and the design was patented in 1812.

From <a href="https://uslhs.org/reflectors">https://uslhs.org/reflectors</a>

## Three Types of Experiment

- 1. Heterodyne detection
  - Downconvert signal frequency by mixing with a local oscillator.
  - Excellent for measuring narrow spectral features.
  - Ultimate sensitivity governed by Standard Quantum Limit (SQL)  $T_{noise} = hf/K_b$
- 2. Bolometer
  - Absorb optical power on a "black" surface & measure temperature.
  - Intrinsically broadband- single device may cover decades of wavelength.
  - No intrinsic frequency resolution.
  - Not subject to Standard Quantum Limit.
  - Detection of  $10^{-25}$  W KSVZ axion signal within one year requires Noise Equivalent Power (NEP)  $\sim 10^{-22} W / \sqrt{Hz}$ . Two orders of magnitude beyond state-of-art.

#### 3. Photon counting

- Simple counting experiment similar to WIMP searches.
- Background rate as low as ~1 event/day needed to cover mass range up to 0.1 eV.
- This is beyond current capability, but photon counting technology is evolving rapidly, driven by quantum information science applications.

#### Heterodyne detection





### Comparison of Detection Methods

- 10 m<sup>2</sup> x (10 T)<sup>2</sup> radiator
- 100-day integration time



## Detectors

|                                   | Microwave               |                                                    | Mm                                 |                                |        | IR                     | Visible    | UV         |
|-----------------------------------|-------------------------|----------------------------------------------------|------------------------------------|--------------------------------|--------|------------------------|------------|------------|
|                                   | 1 GHz                   | 10 GHz                                             | 100 GHz                            | 1 THz                          | 10 THz | 100 THz                | 1000 THz   | 1 PHz      |
| Photomultiplier                   |                         |                                                    |                                    |                                |        | Mature si              | ngle photo | n counting |
| Photodiode, SIPM, APD             |                         |                                                    |                                    |                                |        | high dark counts       |            |            |
| HEMT                              | Phase sensitive and bro |                                                    | adband                             |                                |        |                        |            |            |
| Superconducting paramp JPA, TWPA  | ~quantu                 | m limited                                          |                                    |                                |        |                        |            |            |
| Photomixers SIS, HEM              |                         |                                                    | Narrow band                        |                                |        |                        |            |            |
| Semiconductor bolometer           |                         |                                                    | Bolometer                          | S                              |        |                        |            |            |
| Transition Edge Sensor (TES)      |                         |                                                    | NEP~10 <sup>-18</sup> W/\langle Hz |                                |        | Superconducting photon |            |            |
| Kinetic Inductance Detector (KID) |                         |                                                    |                                    |                                |        | counters with          |            |            |
| Superconducting Nanowire SNSPD    |                         |                                                    |                                    |                                | lo     | low dark current       |            |            |
| Qubit                             |                         |                                                    |                                    |                                |        |                        |            |            |
| Quantum Capacitance Detector      |                         |                                                    | ~10                                | ) <sup>-20</sup> W/√ <i>Hz</i> |        |                        |            |            |
| Current Biased Josephson Junction |                         | Developing single photon technologies for GHz- THz |                                    |                                |        |                        |            |            |

## A few notable recent photon counting results

- Detection of individual 1.5 THz photons (6 meV) with NEP 2 x 10<sup>-20</sup> W/Hz<sup>1/2</sup> Echternach et al., Nature Astronomy 2, 90–97 (2018).
- Counting 6 GHz (25 μeV) photons by coupling to a qubit. Background ~3 Hz, Dixit et al., arXiv:2008.12231v2
- Counting 14 GHz photons (58 μeV) with current-biased Josephson junction with backgrounds below 10<sup>-3</sup> Hz. Kuzmin *et al., IEEE Trans. Appl. Super.* 28 7 (2018) & Patras 2019.
- NIST/ MIT superconducting nanowires with high counting efficiency for 1550 nm photons (0.8 eV) and backgrounds now <1/day. Hochberg *et al.*, PRL 123 (2019).
- Counting of single photons in the previously inaccessible range from microwaves to terahertz is an exciting and rapidly moving field.
- Still a way to go before meeting needed requirements for QCD axion detection.

# NIST/ MIT Superconducting Nanowire Single Photon Detectors with backgrounds <1/day at 0.8 eV.





- •Based on WSi thin film from Varun Verma, NIST
- •Detector fabricated by Ilya Charaev, MIT
- •400 x 400  $\mu m^2$  area
- •Illuminated with 1550nm light

Figures from Sae Woo Nam (NIST)

See "Detecting Dark Matter with Superconducting Nanowires", Yonit Hochberg et al., PRL 123 (2019)

## Pilot Experiment- Dark Photon Search

- 45- cm aluminum reflector at 4 Kelvin.
- SNSPD photon counter from NIST group.
- One day of counting with no backgrounds would produce world's best limits on dark photon dark matter in a narrow frequency band.





360 micron



### **BREAD Collaboration**

Broadband Reflector Experiment for Axion Detection (BREAD)

Pete Barry, Clarence Chang, Juliang Li *Argonne National Laboratory* Gianpaolo Carosi, *Lawrence Livermore National Laboratory* Kristin Dona, Jesse Liu, David Miller, *University of Chicago* Daniel Bowring, Aaron Chou, Mohamed Hassan, Stefan Knirck, Noah Kurinsky, Andrew Sonnenschein, *Fermilab* Rakshya Khatiwada, *Fermilab and Illinois Institute of Technology* Sae Woo Nam, *National Institute of Standards and Technology* Omid Noroozian, *NASA Goddard Space Flight Center* 

*This work was supported by the Fermi Research Alliance, LLC under* Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.